High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,es...High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,establishing dynamic models for both helical gear and herringbone gear transmissions in high-speed trains.The modeling particularly emphasizes the precision of the bearings at the gearbox's pinion and gear wheels.Using this model,a comparative analysis is conducted on the bearing loads and contact stresses of the gearbox bearings under uniform-speed operation between the two gear transmissions.The findings reveal that the helical gear transmission generates axial forces leading to severe load imbalance on the bearings at both sides of the large gear,and this imbalance intensifies with the increase in train speed.Consequently,this results in a significant increase in contact stress on the bearings on one side.The adoption of herringbone gear transmission effectively suppresses axial forces,resolving the load imbalance issue and substantially reducing the contact stress on the originally biased side of the bearings.The study demonstrates that employing herringbone gear transmission can significantly enhance the service performance of high-speed train gearbox bearings,thereby extending their service life.展开更多
The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a ...The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a comparably conservative rotary-scaling finetuning(RSFT)method,which introduces two design variables and an empirical formula,is proposed to fine-tune the traditional wheel profiles for improving their engineering applicability.For the second module,for the TRAXX locomotives serving on the Blankenburg–Rubeland line,an optimization function representing the relationship between the wheel profile and the wheel–rail wear number is established based on Kriging surrogate model(KSM).For the third module,a method combining the regression capability of KSM with the iterative computing power of particle swarm optimization(PSO)is proposed to quickly and reliably implement the task of optimizing wheel profiles.Finally,with the RSFT–KSM–PSO method,we propose two wear-resistant wheel profiles for the TRAXX locomotives serving on the Blankenburg–Rubeland line,namely S1002-S and S1002-M.The S1002-S profile minimizes the total wear number by 30%,while the S1002-M profile makes the wear distribution more uniform through a proper sacrifice of the tread wear number,and the total wear number is reduced by 21%.The quasi-static and hunting stability tests further demonstrate that the profile designed by the RSFT–KSM–PSO method is promising for practical engineering applications.展开更多
基金financial support provided by the National Key Research and Development Project of China(Grant No.2022YFB3402901)the National Natural Science Foundation of China(Grant No.52305070,52302467)。
文摘High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,establishing dynamic models for both helical gear and herringbone gear transmissions in high-speed trains.The modeling particularly emphasizes the precision of the bearings at the gearbox's pinion and gear wheels.Using this model,a comparative analysis is conducted on the bearing loads and contact stresses of the gearbox bearings under uniform-speed operation between the two gear transmissions.The findings reveal that the helical gear transmission generates axial forces leading to severe load imbalance on the bearings at both sides of the large gear,and this imbalance intensifies with the increase in train speed.Consequently,this results in a significant increase in contact stress on the bearings on one side.The adoption of herringbone gear transmission effectively suppresses axial forces,resolving the load imbalance issue and substantially reducing the contact stress on the originally biased side of the bearings.The study demonstrates that employing herringbone gear transmission can significantly enhance the service performance of high-speed train gearbox bearings,thereby extending their service life.
基金the Assets4Rail Project which is funded by the Shift2Rail Joint Undertaking under the EU’s H2020 program(Grant No.826250)the Open Research Fund of State Key Laboratory of Traction Power of Southwest Jiaotong University(Grant No.TPL2011)+1 种基金part of the experiment data concerning the railway line is supported by the DynoTRAIN Project,funded by European Commission(Grant No.234079)The first author is also supported by the China Scholarship Council(Grant No.201707000113).
文摘The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a comparably conservative rotary-scaling finetuning(RSFT)method,which introduces two design variables and an empirical formula,is proposed to fine-tune the traditional wheel profiles for improving their engineering applicability.For the second module,for the TRAXX locomotives serving on the Blankenburg–Rubeland line,an optimization function representing the relationship between the wheel profile and the wheel–rail wear number is established based on Kriging surrogate model(KSM).For the third module,a method combining the regression capability of KSM with the iterative computing power of particle swarm optimization(PSO)is proposed to quickly and reliably implement the task of optimizing wheel profiles.Finally,with the RSFT–KSM–PSO method,we propose two wear-resistant wheel profiles for the TRAXX locomotives serving on the Blankenburg–Rubeland line,namely S1002-S and S1002-M.The S1002-S profile minimizes the total wear number by 30%,while the S1002-M profile makes the wear distribution more uniform through a proper sacrifice of the tread wear number,and the total wear number is reduced by 21%.The quasi-static and hunting stability tests further demonstrate that the profile designed by the RSFT–KSM–PSO method is promising for practical engineering applications.