The query optimizer uses cost-based optimization to create an execution plan with the least cost,which also consumes the least amount of resources.The challenge of query optimization for relational database systems is...The query optimizer uses cost-based optimization to create an execution plan with the least cost,which also consumes the least amount of resources.The challenge of query optimization for relational database systems is a combinatorial optimization problem,which renders exhaustive search impossible as query sizes rise.Increases in CPU performance have surpassed main memory,and disk access speeds in recent decades,allowing data compression to be used—strategies for improving database performance systems.For performance enhancement,compression and query optimization are the two most factors.Compression reduces the volume of data,whereas query optimization minimizes execution time.Compressing the database reduces memory requirement,data takes less time to load into memory,fewer buffer missing occur,and the size of intermediate results is more diminutive.This paper performed query optimization on the graph database in a cloud dew environment by considering,which requires less time to execute a query.The factors compression and query optimization improve the performance of the databases.This research compares the performance of MySQL and Neo4j databases in terms of memory usage and execution time running on cloud dew servers.展开更多
The emergence of deep fake videos in recent years has made image falsification a real danger.A person’s face and emotions are deep-faked in a video or speech and are substituted with a different face or voice employi...The emergence of deep fake videos in recent years has made image falsification a real danger.A person’s face and emotions are deep-faked in a video or speech and are substituted with a different face or voice employing deep learning to analyze speech or emotional content.Because of how clever these videos are frequently,Manipulation is challenging to spot.Social media are the most frequent and dangerous targets since they are weak outlets that are open to extortion or slander a human.In earlier times,it was not so easy to alter the videos,which required expertise in the domain and time.Nowadays,the generation of fake videos has become easier and with a high level of realism in the video.Deepfakes are forgeries and altered visual data that appear in still photos or video footage.Numerous automatic identification systems have been developed to solve this issue,however they are constrained to certain datasets and performpoorly when applied to different datasets.This study aims to develop an ensemble learning model utilizing a convolutional neural network(CNN)to handle deepfakes or Face2Face.We employed ensemble learning,a technique combining many classifiers to achieve higher prediction performance than a single classifier,boosting themodel’s accuracy.The performance of the generated model is evaluated on Face Forensics.This work is about building a new powerful model for automatically identifying deep fake videos with the DeepFake-Detection-Challenges(DFDC)dataset.We test our model using the DFDC,one of the most difficult datasets and get an accuracy of 96%.展开更多
In Saudi Arabia,drones are increasingly used in different sensitive domains like military,health,and agriculture to name a few.Typically,drone cameras capture aerial images of objects and convert them into crucial dat...In Saudi Arabia,drones are increasingly used in different sensitive domains like military,health,and agriculture to name a few.Typically,drone cameras capture aerial images of objects and convert them into crucial data,alongside collecting data from distributed sensors supplemented by location data.The interception of the data sent from the drone to the station can lead to substantial threats.To address this issue,highly confidential protection methods must be employed.This paper introduces a novel steganography approach called the Shuffling Steganography Approach(SSA).SSA encompasses five fundamental stages and three proposed algorithms,designed to enhance security through strategic encryption and data hiding techniques.Notably,this method introduces advanced resistance to brute force attacks by employing predefined patterns across a wide array of images,complicating unauthorized access.The initial stage involves encryption,dividing,and disassembling the encrypted data.A small portion of the encrypted data is concealed within the text(Algorithm 1)in the third stage.Subsequently,the parts are merged and mixed(Algorithm 2),and finally,the composed text is hidden within an image(Algorithm 3).Through meticulous investigation and comparative analysis with existing methodologies,the proposed approach demonstrates superiority across various pertinent criteria,including robustness,secret message size capacity,resistance to multiple attacks,and multilingual support.展开更多
文摘The query optimizer uses cost-based optimization to create an execution plan with the least cost,which also consumes the least amount of resources.The challenge of query optimization for relational database systems is a combinatorial optimization problem,which renders exhaustive search impossible as query sizes rise.Increases in CPU performance have surpassed main memory,and disk access speeds in recent decades,allowing data compression to be used—strategies for improving database performance systems.For performance enhancement,compression and query optimization are the two most factors.Compression reduces the volume of data,whereas query optimization minimizes execution time.Compressing the database reduces memory requirement,data takes less time to load into memory,fewer buffer missing occur,and the size of intermediate results is more diminutive.This paper performed query optimization on the graph database in a cloud dew environment by considering,which requires less time to execute a query.The factors compression and query optimization improve the performance of the databases.This research compares the performance of MySQL and Neo4j databases in terms of memory usage and execution time running on cloud dew servers.
文摘The emergence of deep fake videos in recent years has made image falsification a real danger.A person’s face and emotions are deep-faked in a video or speech and are substituted with a different face or voice employing deep learning to analyze speech or emotional content.Because of how clever these videos are frequently,Manipulation is challenging to spot.Social media are the most frequent and dangerous targets since they are weak outlets that are open to extortion or slander a human.In earlier times,it was not so easy to alter the videos,which required expertise in the domain and time.Nowadays,the generation of fake videos has become easier and with a high level of realism in the video.Deepfakes are forgeries and altered visual data that appear in still photos or video footage.Numerous automatic identification systems have been developed to solve this issue,however they are constrained to certain datasets and performpoorly when applied to different datasets.This study aims to develop an ensemble learning model utilizing a convolutional neural network(CNN)to handle deepfakes or Face2Face.We employed ensemble learning,a technique combining many classifiers to achieve higher prediction performance than a single classifier,boosting themodel’s accuracy.The performance of the generated model is evaluated on Face Forensics.This work is about building a new powerful model for automatically identifying deep fake videos with the DeepFake-Detection-Challenges(DFDC)dataset.We test our model using the DFDC,one of the most difficult datasets and get an accuracy of 96%.
基金funded by the Research Deanship of the Islamic University of Madinah under grant number 966.
文摘In Saudi Arabia,drones are increasingly used in different sensitive domains like military,health,and agriculture to name a few.Typically,drone cameras capture aerial images of objects and convert them into crucial data,alongside collecting data from distributed sensors supplemented by location data.The interception of the data sent from the drone to the station can lead to substantial threats.To address this issue,highly confidential protection methods must be employed.This paper introduces a novel steganography approach called the Shuffling Steganography Approach(SSA).SSA encompasses five fundamental stages and three proposed algorithms,designed to enhance security through strategic encryption and data hiding techniques.Notably,this method introduces advanced resistance to brute force attacks by employing predefined patterns across a wide array of images,complicating unauthorized access.The initial stage involves encryption,dividing,and disassembling the encrypted data.A small portion of the encrypted data is concealed within the text(Algorithm 1)in the third stage.Subsequently,the parts are merged and mixed(Algorithm 2),and finally,the composed text is hidden within an image(Algorithm 3).Through meticulous investigation and comparative analysis with existing methodologies,the proposed approach demonstrates superiority across various pertinent criteria,including robustness,secret message size capacity,resistance to multiple attacks,and multilingual support.