Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic propertie...Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.展开更多
Multifunctional lead-free double perovskites demonstrate remarkable potential towards applications in various fields.Herein,an environmentally-friendly,low-cost,high-throughput Cs_(2)NaFeCl_(6) single crystal with exc...Multifunctional lead-free double perovskites demonstrate remarkable potential towards applications in various fields.Herein,an environmentally-friendly,low-cost,high-throughput Cs_(2)NaFeCl_(6) single crystal with exceedingly high thermal stability is designed and grown.It obtains a cubic lattice system in the temperature range of 80-500 K,accompanied by a completely reversible chromatic variation ranging from yellow to black.Importantly,the intriguing thermochromism is proved to own extremely high reproducibility(over 1000 cycles)without a hysteretic effect,originating from its structural flexibility that including(i)the noteworthy distortion/deformation of[NaCl_(6)]5−and[FeCl_(6)]3−octahedra;(ii)order-disorder arrangement transition of[NaCl_(6)]5−and[FeCl6]3−octahedra as the function of temperature.This study paves the way towards a new class of smart windows and camouflage coatings with an unprecedented colour range based on a Cs_(2)NaFeCl_(6) perovskite.展开更多
文摘Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.
基金The research was funded by the National Natural Science Foundation of China(No.51802120,51872126,22075103,51672111)Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholar(No.2019B151502030)+7 种基金Natural Science Foundation of Guangdong Province(No.2018030310181)the Science and Technology Plan Project of Guangzhou(No.202002030159)Guangdong Basic and Applied Basic Research Foundation for Young Scholar(No.2020A1515111057)‘100 Talents Program of Hebei Province’(No.E2014100008)the Fundamental Research Funds for the Central Universities(No.21619406)X.Y.thanks for the Special Funds for the Cultivation of Guangdong College Students'Scientific and Technological Innovation("Climbing Program"Special Funds)(No.pdjh2019a0055)J.Fan also thanks for the project support for"Young Top talents"in the Pearl River Talent Project of Guangdong Province(2017GC010424)the Guangdong Provincial Innovation and Entrepreneurship Project(grant 2016ZT06D081).
文摘Multifunctional lead-free double perovskites demonstrate remarkable potential towards applications in various fields.Herein,an environmentally-friendly,low-cost,high-throughput Cs_(2)NaFeCl_(6) single crystal with exceedingly high thermal stability is designed and grown.It obtains a cubic lattice system in the temperature range of 80-500 K,accompanied by a completely reversible chromatic variation ranging from yellow to black.Importantly,the intriguing thermochromism is proved to own extremely high reproducibility(over 1000 cycles)without a hysteretic effect,originating from its structural flexibility that including(i)the noteworthy distortion/deformation of[NaCl_(6)]5−and[FeCl_(6)]3−octahedra;(ii)order-disorder arrangement transition of[NaCl_(6)]5−and[FeCl6]3−octahedra as the function of temperature.This study paves the way towards a new class of smart windows and camouflage coatings with an unprecedented colour range based on a Cs_(2)NaFeCl_(6) perovskite.