期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Frontogenesis and Frontolysis of a Cold Filament Driven by the Cross-Filament Wind and Wave Fields Simulated by a Large Eddy Simulation 被引量:1
1
作者 Guojing LI Dongxiao WANG +3 位作者 Changming DONG Jiayi PAN yeqiang shu Zhenqiu ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期509-528,共20页
The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and w... The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and wave fields are studied.The results show that the intense wind and wave fields further break the symmetries of submesoscale flow fields and suppress the levels of filament frontogenesis. The changes of secondary circulation directions—that is, the conversion between the convergence and divergence of the surface cross-filament currents with the downwelling and upwelling jets in the filament center—are associated with the inertial oscillation. The filament frontogenesis and frontolysis caused by the changes of secondary circulation directions may periodically sharpen and smooth the gradient of submesoscale flow fields.The lifecycle of the cold filament may include multiple stages of filament frontogenesis and frontolysis. 展开更多
关键词 cold filament FRONTOGENESIS FRONTOLYSIS large eddy simulation
下载PDF
The impact of ocean data assimilation on seasonal predictions based on the National Climate Center climate system model 被引量:2
2
作者 Wei Zhou Jinghui Li +2 位作者 Fanghua Xu yeqiang shu Yang Feng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第5期58-70,共13页
An ensemble optimal interpolation(EnOI)data assimilation method is applied in the BCCCSM1.1 to investigate the impact of ocean data assimilations on seasonal forecasts in an idealized twin experiment framework.Pseudoo... An ensemble optimal interpolation(EnOI)data assimilation method is applied in the BCCCSM1.1 to investigate the impact of ocean data assimilations on seasonal forecasts in an idealized twin experiment framework.Pseudoobservations of sea surface temperature(SST),sea surface height(SSH),sea surface salinity(SSS),temperature and salinity(T/S)profiles were first generated in a free model run.Then,a series of sensitivity tests initialized with predefined bias were conducted for a one-year period;this involved a free run(CTR)and seven assimilation runs.These tests allowed us to check the analysis field accuracy against the"truth".As expected,data assimilation improved all investigated quantities;the joint assimilation of all variables gave more improved results than assimilating them separately.One-year predictions initialized from the seven runs and CTR were then conducted and compared.The forecasts initialized from joint assimilation of surface data produced comparable SST root mean square errors to that from assimilation of T/S profiles,but the assimilation of T/S profiles is crucial to reduce subsurface deficiencies.The ocean surface currents in the tropics were better predicted when initial conditions produced by assimilating T/S profiles,while surface data assimilation became more important at higher latitudes,particularly near the western boundary currents.The predictions of ocean heat content and mixed layer depth are significantly improved initialized from the joint assimilation of all the variables.Finally,a central Pacific El Ni?o was well predicted from the joint assimilation of surface data,indicating the importance of joint assimilation of SST,SSH,and SSS for ENSO predictions. 展开更多
关键词 global ocean data assimilation EnOI twin experiments
下载PDF
Influence of Coriolis Parameter Variation on Langmuir Turbulence in the Ocean Upper Mixed Layer with Large Eddy Simulation 被引量:1
3
作者 Dongxiao WANG Guojing LI +1 位作者 Lian SHEN yeqiang shu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第9期1487-1500,共14页
Langmuir turbulence is a complex turbulent process in the ocean upper mixed layer.The Coriolis parameter has an important effect on Langmuir turbulence through the Coriolis-Stokes force and Ekman effect,however,this e... Langmuir turbulence is a complex turbulent process in the ocean upper mixed layer.The Coriolis parameter has an important effect on Langmuir turbulence through the Coriolis-Stokes force and Ekman effect,however,this effect on Langmuir turbulence has not been systematically investigated.Here,the impact of the Coriolis parameter on Langmuir turbulence with a change of latitude(LAT)from 20°N to 80°N is studied using a non-hydrostatic large eddy simulation model under an ideal condition.The results show that the ratio of the upper mixed layer depth to Ekman depth scale(RME)RME=0.266(LAT=50°N)is a key value(latitude)for the modulation effect of the Coriolis parameter on the mean and turbulent statistics of Langmuir turbulence.It is found that the rate of change of the sea surface temperature,upper mixed layer depth,entrainment flux,crosswind velocity,downwind vertical momentum flux,and turbulent kinetic energy budget terms associated with Langmuir turbulence are more evident at RME≤0.266(LAT≤50°N)than at RME≥0.266(LAT≥50°N).However,the rate of change of the depth-averaged crosswind vertical momentum flux does not have a clear variation between RME≤0.266 and RME≥0.266.The complex changes of both Langmuir turbulence characteristics and influence of Langmuir turbulence on the upper mixed layer with latitude presented here may provide more information for further improving Langmuir turbulence parameterization. 展开更多
关键词 Langmuir turbulence Coriolis parameter the upper mixed layer large eddy simulation
下载PDF
Variation in concentration of dissolved silicate in the Eastern Philippine deep sea
4
作者 Ruixue XIA Qiang XIE +3 位作者 Weiqiang WANG Hongzhou XU Xuekun SHANG yeqiang shu 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第4期1454-1463,共10页
Upper Circumpolar Deep Water(UCDW)and North Pacifi c Deep Water(NPDW)coexist in the upper deep layer(i.e.,with a 1.2-2.0-℃potential temperature range and a 2000-4100-dbar pressure range)of the Eastern Philippine Sea.... Upper Circumpolar Deep Water(UCDW)and North Pacifi c Deep Water(NPDW)coexist in the upper deep layer(i.e.,with a 1.2-2.0-℃potential temperature range and a 2000-4100-dbar pressure range)of the Eastern Philippine Sea.They have similar properties in potential temperature and salinity,while have a signifi cant diff erence in dissolved silicate.Based on the repeated observations along a 137°E transect from the World Ocean Database(WOD18),this study revealed the interannual variability of dissolved silicate in the upper deep layer of the Eastern Philippine Sea.Dissolved silicate increased in 1995,1996,2005,2006,and 2007,and decreased in 1997,2000,2001,2002,and 2004.Composition analysis showed that the large diff erence between positive and negative dissolved silicate anomalies occurred mainly at~15°N and north of 25°N,with the concentration reaching 4.25μmol/g.Further analysis indicated that the interannual dissolved silicate variability was related to the zonal current variation in the upper deep layer.The relatively strong(weak)westward current transport increased(decreased)NPDW to the Eastern Philippine Sea,thereby resulting in increased(decreased)dissolved silicate. 展开更多
关键词 interannual variability North Pacific deep water upper deep layer dissolved silicate zonal velocity variability
下载PDF
Multi-agent mobile networking observation experiment at the air-sea interface of ocean eddy
5
作者 Yi ZHANG Dongxiao WANG +9 位作者 Li ZHOU Chunhua QIU Yunfei ZHANG Zhiliang DENG Biao ZHANG Yunping LIU yeqiang shu Fenghua ZHOU Danian LIU Zhengqiu ZHANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第10期3083-3097,共15页
Current climate forecasting has advanced to the stage of investigating mesoscale air-sea interactions. Recent studies have identified significant structural differences between the cores and edges of mesoscale eddies;... Current climate forecasting has advanced to the stage of investigating mesoscale air-sea interactions. Recent studies have identified significant structural differences between the cores and edges of mesoscale eddies;however, the effects of these structural variations on air-sea fluxes and the Marine Atmospheric Boundary Layer(MABL) remain underexplored. Traditional observations often fail to capture the detailed structures of eddies, necessitating enhanced observations at high spatiotemporal resolution for mesoscale eddies. To address this, efforts have been made to develop multi-agent platforms and expendable air-sea interface observation technologies. A task-oriented observation scheme was developed to monitor the spatial characteristics of mesoscale eddies. The South China Sea(SCS) is rich in mesoscale eddies with rapid motion changes, requiring enhanced observations of the air-sea interface using multi-agent mobile networking. An anticyclonic eddy was observed in the eastern region of the Xisha Islands in the SCS, and we examined variations in air-sea fluxes across different regions within the eddy. 展开更多
关键词 MULTI-AGENT Mobile networking Mesoscale eddy Air-sea interface Collaborative observation
原文传递
Field-observation for an anticyclonic mesoscale eddy consisted of twelve gliders and sixty-two expendable probes in the northern South China Sea during summer 2017 被引量:21
6
作者 yeqiang shu Ju CHEN +3 位作者 shuo LI Qiang WANG Jiancheng YU Dongxiao WANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2019年第2期451-458,共8页
An intensive field observation experiment using 12 Chinese gliders equipped with conductivity-temperature-depth (CTD) sensors and 62 expendable CTD probes (XCTDs) was performed to investigate the 3-D structure and tim... An intensive field observation experiment using 12 Chinese gliders equipped with conductivity-temperature-depth (CTD) sensors and 62 expendable CTD probes (XCTDs) was performed to investigate the 3-D structure and time evolution of an anticyclonic eddy in the northern South China Sea (NSCS). The observed results showed that the anticyclonic eddy had a horizontal radius of about 80 km at surface and a vertical depth of impact of more than 1000 m. The largest temperature and salinity anomalies compared with the averaged values of the temperature and salinity profiles were 3.5°C and 0.4 psu at 120 m depth, respectively. Combined analysis of altimeter sea level and water mass properties indicated that the anticyclonic eddy was shed from the Kuroshio loop current. The vertical axis of the anticyclonic eddy tilted from surface to the observed maximum depth (1000 m) along its translation direction against the 2000 m isobath. The center of the anticyclonic eddy remained in the region east of Dongsha Island for more than half a month. During this time, the long axis direction of the eddy changed from across the slope to along the slope. Then, the eddy moved southward along the 2000 m isobaths. Both the geostrophic current and temperature distribution revealed that the eddy intensity weakened during the observation period gradually. These observations indicated strong interaction between the anticyclonic eddy and the slope topography of Dongsha Island. 展开更多
关键词 Anticyclonic MESOSCALE EDDY GLIDER northern South China Sea
原文传递
Advances in research of the mid-deep South China Sea circulation 被引量:11
7
作者 Dongxiao WANG Qiang WANG +16 位作者 shuqun CAI Xiaodong SHANG Shiqiu PENG yeqiang shu Jingen XIAO Xiaohui XIE Zhiwei ZHANG Zhiqiang LIU Jian LAN Dake CHEN Huijie XUE Guihua WANG Jianping GAN Xinong XIE Rui ZHANG Hui CHEN Qingxuan YANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2019年第12期1992-2004,共13页
The South China Sea(SCS)is a large marginal sea connecting the Indian and Pacific oceans.Under the factors of monsoons,strait transport,and varied bathymetry,the SCS presents a three-layer structure and strong diapycn... The South China Sea(SCS)is a large marginal sea connecting the Indian and Pacific oceans.Under the factors of monsoons,strait transport,and varied bathymetry,the SCS presents a three-layer structure and strong diapycnal mixing which is far greater than that in the open ocean.Theoretical analysis and observations reveal that internal tides,internal solitary waves,and strong winds are the sources of the strong mixing in the northern SCS.A major consequence of the strong mixing is an active mid-deep circulation system.This system promotes exchange of water between the SCS and adjacent oceans,and also regulates the upper layer of wind-driven circulation,making the 3 dimensional SCS circulation clearly different from that in other tropical and subtropical marginal seas.The mass transport capacity of the mid-deep circulation has a substantial impact on marine sedimentation,the biogeochemical cycle,and other processes in the SCS.This paper summarizes the recent advances in middeep sea circulation dynamics of the SCS,and discusses the opportunities and challenges in this area. 展开更多
关键词 Mid-deep SOUTH China Sea CIRCULATION Diapycnal mixing MULTI-SCALE processes interaction
原文传递
Hydrographic field investigations in the Northern South China Sea by open cruises during 2004-2013 被引量:11
8
作者 Lili Zeng Qiang Wang +8 位作者 Qiang Xie Ping Shi Lei Yang yeqiang shu Ju Chen Dandan Sui Yunkai He Rongyu Chen Dongxiao Wang 《Science Bulletin》 SCIE EI CAS CSCD 2015年第6期607-615,M0003,共10页
In the past 10 years (2004-2013), annual open cruise during late summer provided new opportunities for comprehensive studies in the Northern South China Sea (NSCS). The 10-year field investigation program was carr... In the past 10 years (2004-2013), annual open cruise during late summer provided new opportunities for comprehensive studies in the Northern South China Sea (NSCS). The 10-year field investigation program was carried out by the South China Sea Institute of Oceanology, Chinese Academy of Sciences (SCSIO, CAS). Measurements inclu- ded water mass property, ocean circulation, atmospheric structure, and chemical and biological elements. The observation data collected during these open cruises have been intensively used in the studies of marine oceanographic, meteorological, chemical, and biological processes in the NSCS. In this study, comprehensive assessment of data application in oceanographic and meteorological studies is provided: (1) the property and variability of water masses in different layers; (2) the distribution of main currents and three-dimensional structure of mesoscale eddies; and (3) atmospheric structure and its feedback to the ocean. With the continuance of open cruises, it is feasible to construct high- quality, gridded climatological marine meteorological datasets in the NSCS in the near future. 展开更多
关键词 Northern South China Sea Dataapplication Water mass property Ocean circulation Atmospheric structure
原文传递
Origin of the springtime South China Sea Warm Current in the southwestern Taiwan Strait: Evidence from seawater oxygen isotope 被引量:2
9
作者 Dongyu CHEN Ergang LIAN +5 位作者 yeqiang shu Shouye YANG Yalong LI Chao LI Pengfei LIU Ni SU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第10期1564-1576,共13页
Oxygen isotope(δ^18O)of seawater is an excellent proxy for tracing the origins of water masses and their mixing processes.Combining with hydrographic observation,hybrid coordinate ocean model(HYCOM)analysis data,and ... Oxygen isotope(δ^18O)of seawater is an excellent proxy for tracing the origins of water masses and their mixing processes.Combining with hydrographic observation,hybrid coordinate ocean model(HYCOM)analysis data,and seawater oxygen isotope,we investigated the source of the South China Sea Warm Current(SCSWC)in the southwestern Taiwan Strait and its underlying mechanism.Results show that the Kuroshio subsurface water(KSSW)can intrude the continental slope in the southwestern Taiwan Strait,and thereby climb up the continental slope coupled with upwelling.Theδ^18O-salinity relationship further indicates that in spring,the SCSWC in the southwestern Taiwan Strait originates from the upslope deflection of the slope current formed by the KSSW intrusion into the South China Sea,rather than from the west segment of the SCSWC formed to the east of Hainan Island.In addition,the southward flowing Zhe-Min Coastal Current(ZMCC)can reach as far as the Taiwan Bank(TB)and deflects offshore over the western TB at approximately 23.5°N,to some extent affecting the SCSWC.Moreover,this study reveals that seawaterδ^18O is exquisitely sensitive to the determination of the origin and transport of water masses as compared with traditional potential temperature-salinity plot(θ-S)and HYCOM analysis data.In addition,their coupling can more reliably interpret the mixing processes of shelf water masses. 展开更多
关键词 Oxygen isotope South China Sea Warm Current Zhe-Min Coastal Current KUROSHIO Southwestern Taiwan Strait
原文传递
Progress on shelf and slope circulation in the northern South China Sea 被引量:13
10
作者 yeqiang shu Qiang WANG Tingting ZU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第5期560-571,共12页
Influenced by the seasonally reversed monsoons, water exchange through straits, and topography, the shelf and slope circulation in the northern South China Sea(NSCS) is complex and changeable. The typical current syst... Influenced by the seasonally reversed monsoons, water exchange through straits, and topography, the shelf and slope circulation in the northern South China Sea(NSCS) is complex and changeable. The typical current system in the NSCS consists of the slope current, South China Sea warm current(SCSWC), coastal current, and associated upwelling(in summer) and downwelling(in winter). This paper reviews recent advances in the study of NSCS shelf and slope circulation since the 1990 s,and summarizes the roles of Kuroshio intrusion, the monsoons, topography, and the buoyancy effect of the Pearl River plume in the shelf and slope current system of the NSCS. We also point out some potential scientific issues that require further study, such as the dynamic connection between the internal basin and shelf areas of the NSCS, the persistence of the SCSWC in winter, the temporo-spatial characteristics of downwelling during winter in the NSCS, and its material and energy transport. 展开更多
关键词 The northern South China Sea Circulation Progress
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部