期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MCBAN: A Small Object Detection Multi-Convolutional Block Attention Network
1
作者 Hina Bhanbhro yew kwang hooi +2 位作者 Mohammad Nordin Bin Zakaria Worapan Kusakunniran Zaira Hassan Amur 《Computers, Materials & Continua》 SCIE EI 2024年第11期2243-2259,共17页
Object detection has made a significant leap forward in recent years.However,the detection of small objects continues to be a great difficulty for various reasons,such as they have a very small size and they are susce... Object detection has made a significant leap forward in recent years.However,the detection of small objects continues to be a great difficulty for various reasons,such as they have a very small size and they are susceptible to missed detection due to background noise.Additionally,small object information is affected due to the downsampling operations.Deep learning-based detection methods have been utilized to address the challenge posed by small objects.In this work,we propose a novel method,the Multi-Convolutional Block Attention Network(MCBAN),to increase the detection accuracy of minute objects aiming to overcome the challenge of information loss during the downsampling process.The multi-convolutional attention block(MCAB);channel attention and spatial attention module(SAM)that make up MCAB,have been crafted to accomplish small object detection with higher precision.We have carried out the experiments on the Karlsruhe Institute of Technology and Toyota Technological Institute(KITTI)and Pattern Analysis,Statical Modeling and Computational Learning(PASCAL)Visual Object Classes(VOC)datasets and have followed a step-wise process to analyze the results.These experiment results demonstrate that significant gains in performance are achieved,such as 97.75%for KITTI and 88.97%for PASCAL VOC.The findings of this study assert quite unequivocally the fact that MCBAN is much more efficient in the small object detection domain as compared to other existing approaches. 展开更多
关键词 Multi-convolutional channel attention spatial attention YOLO
下载PDF
Context and Machine Learning Based Trust Management Framework for Internet of Vehicles 被引量:1
2
作者 Abdul Rehman Mohd Fadzil Hassan +4 位作者 yew kwang hooi Muhammad Aasim Qureshi Tran Duc Chung Rehan Akbar Sohail Safdar 《Computers, Materials & Continua》 SCIE EI 2021年第9期4125-4142,共18页
Trust is one of the core components of any ad hoc network security system.Trust management(TM)has always been a challenging issue in a vehicular network.One such developing network is the Internet of vehicles(IoV),whi... Trust is one of the core components of any ad hoc network security system.Trust management(TM)has always been a challenging issue in a vehicular network.One such developing network is the Internet of vehicles(IoV),which is expected to be an essential part of smart cities.IoV originated from the merger of Vehicular ad hoc networks(VANET)and the Internet of things(IoT).Security is one of the main barriers in the on-road IoV implementation.Existing security standards are insufficient to meet the extremely dynamic and rapidly changing IoV requirements.Trust plays a vital role in ensuring security,especially during vehicle to vehicle communication.Vehicular networks,having a unique nature among other wireless ad hoc networks,require dedicated efforts to develop trust protocols.Current TM schemes are inflexible and static.Predefined scenarios and limited parameters are the basis for existing TM models that are not suitable for vehicle networks.The vehicular network requires agile and adaptive solutions to ensure security,especially when it comes to critical messages.The vehicle network’s wireless nature increases its attack surface and exposes the network to numerous security threats.Moreover,internet involvement makes it more vulnerable to cyberattacks.The proposed TM framework is based on context-based cognition and machine learning to be best suited to IoV dynamics.Machine learning is the best solution to utilize the big data produced by vehicle sensors.To handle the uncertainty Bayesian machine learning statistical model is used.The proposed framework can adapt scenarios dynamically and infer using the maximum possible parameter available.The results indicated better performance than existing TM methods.Furthermore,for future work,a high-level machine learning model is proposed. 展开更多
关键词 Internet of vehicles(IoV) trust management(TM) vehicular ad hoc network(VANET) machine learning context awareness bayesian learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部