Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and foun...Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.展开更多
Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion(PBF)process.In this study,a dynamic monitoring and feedback system of powder bed temperature fiel...Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion(PBF)process.In this study,a dynamic monitoring and feedback system of powder bed temperature field using an infrared thermal imager has been established and integrated into a four-laser PBF equipment with a working area of 2000 mm×2000 mm.The heat-affected zone(HAZ)temperature field has been controlled by adjusting the scanning speed dynamically.Simultaneously,the relationship among spot size,HAZ temperature,and part performance has been established.The fluctuation of the HAZ temperature in four-laser scanning areas was decreased from 30.85℃to 17.41℃.Thus,the consistency of the sintering performance of the produced large component has been improved.Based on the controllable temperature field,a dynamically adjusting strategy for laser spot size was proposed,by which the fabrication efficiency was improved up to 65.38%.The current research results were of great significance to the further industrial applications of large-scale PBF equipment.展开更多
Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and...Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and phosphorus(P)in forest plant-soil-microbe systems remains unclear.Methods:We conducted a meta-analysis based on 751 pairs of observations to evaluate the responses of plant,soil and microbial biomass C,N and P nutrients and stoichiometry to N addition in different N intensity(050,50–100,>100 kg·ha^(-1)·year^(-1)of N),duration(0–5,>5 year),method(understory,canopy),and matter(ammonium N,nitrate N,organic N,mixed N).Results:N addition significantly increased plant N:P(leaf:14.98%,root:13.29%),plant C:P(leaf:6.8%,root:25.44%),soil N:P(13.94%),soil C:P(10.86%),microbial biomass N:P(23.58%),microbial biomass C:P(12.62%),but reduced plant C:N(leaf:6.49%,root:9.02%).Furthermore,plant C:N:P stoichiometry changed significantly under short-term N inputs,while soil and microorganisms changed drastically under high N addition.Canopy N addition primarily affected plant C:N:P stoichiometry through altering plant N content,while understory N inputs altered more by influencing soil C and P content.Organic N significantly influenced plant and soil C:N and C:P,while ammonia N changed plant N:P.Plant C:P and soil C:N were strongly correlated with mean annual precipitation(MAT),and the C:N:P stoichiometric flexibility in soil and plant under N addition connected with soil depth.Besides,N addition decoupled the correlations between soil microorganisms and the plant.Conclusions:N addition significantly increased the C:P and N:P in soil,plant,and microbial biomass,reducing plant C:N,and aggravated forest P limitations.Significantly,these impacts were contingent on climate types,soil layers,and N input forms.The findings enhance our comprehension of the plant-soil system nutrient cycling mechanisms in forest ecosystems and plant strategy responses to N deposition.展开更多
AIM:To assess the efficacy of artificial natural light in preventing incident myopia in primary school-age children.METHODS:This is a prospective,randomized control,intervention study.A total of 1840 students from 39 ...AIM:To assess the efficacy of artificial natural light in preventing incident myopia in primary school-age children.METHODS:This is a prospective,randomized control,intervention study.A total of 1840 students from 39 classes in 4 primary schools in Foshan participated in this study.The whole randomization method was adopted to include classes as a group according to 1:1 randomized control.Classrooms in the control group were illuminated by usual light,and classrooms in the intervention group were illuminated by artificial natural light.All students received uncorrected visual acuity and best-corrected visual acuity measurement,non-cycloplegic autorefraction,ocular biometric examination,slit lamp and strabismus examination.Three-year follow-up,the students underwent same procedures.Myopia was defined as spherical equivalent refraction≤-0.50 D and uncorrected visual acuity<20/20.RESULTS:There were 894 students in the control group and 946 students in the intervention group with a mean±SD age of 7.50±0.53y.The three-year cumulative incidence rate of myopia was 26.4%(207 incident cases among 784 eligible participants at baseline)in the control group and 21.2%(164 incident cases among 774 eligible participants at baseline)in the intervention group[difference of 5.2%(95%CI,3.7%to 10.1%);P=0.035].There was also a significant difference in the three-year change in spherical equivalent refraction for the control group(-0.81 D)compared with the intervention group[-0.63 D;difference of 0.18 D(95%CI,0.08 to 0.28 D);P<0.001].Elongation of axial length was significantly different between in the control group(0.77 mm)and the intervention group[0.72 mm;difference of 0.05 mm(95%CI,0.01 to 0.09 mm);P=0.003].CONCLUSION:Artificial natural light in the classroom of primary schools can result in reducing incidence rate of myopia during a period of three years.展开更多
BACKGROUND Shikonin is a natural remedy that is effective at treating diabetic wounds.NFAT5 is a potential therapeutic target for diabetes,and mitochondrial function is essen-tial for wound healing.However,the relatio...BACKGROUND Shikonin is a natural remedy that is effective at treating diabetic wounds.NFAT5 is a potential therapeutic target for diabetes,and mitochondrial function is essen-tial for wound healing.However,the relationship among Shikonin,NFAT5,and mitochondrial function has not been thoroughly studied.Here,we offer new per-spectives on the advantages of shikonin for managing diabetes.AIM To assess the therapeutic mechanism of shikonin in diabetic wounds,its rela-tionship with NFAT5,and its protection of mitochondrial function.METHODS Hypertonic cell and diabetic wound mouse models were established.NFAT5 expression was measured through western blotting and immunofluorescence,in vivo and in vitro.Mitochondrial function was evaluated using reactive oxygen species(ROS)detection and JC-1 and Calcein AM dyes.Mitochondrial structures were observed using transmission electron microscopy.The NFAT5/AMPK pathway was analyzed using a transfection vector and an inhibitor.The effect of shikonin on cells under hypertonic conditions via the NFAT5/AMPK pathway was assessed using western blotting.RESULTS Shikonin treatment preserved HaCaT cell viability,while significantly reducing cyclooxygenase-2 expression levels in a high-glucose environment(P<0.05).Additionally,shikonin maintained mitochondrial morphology,enhanced membrane potential,reduced membrane permeability,and decreased ROS levels in HaCaT cells under hyperosmolar stress.Furthermore,shikonin promoted wound healing in diabetic mice(P<0.05).Shikonin also inhibited NFAT5,in vivo and in vitro(P<0.05).Shikonin treatment reduced NFAT5 expression levels,subsequently inhibiting AMPK expression in vitro(P<0.05).Finally,shikonin inhibited several key downstream molecules of the NFAT5/AMPK pathway,including mammalian target of rapamycin,protein kinase B,nuclear factor kappa-light-chain-enhancer of activated B cells,and inducible nitric oxide synthase(P<0.05).CONCLUSION Shikonin protects mitochondria via the NFAT5/AMPK-related pathway and enhances wound healing in diabetes.展开更多
Diabetic cardiomyopathy(DCM),a complication of diabetes,poses a significant threat to public health,both its diagnosis and treatment presents challenges.Teneligliptin has promising applications and research implicatio...Diabetic cardiomyopathy(DCM),a complication of diabetes,poses a significant threat to public health,both its diagnosis and treatment presents challenges.Teneligliptin has promising applications and research implications in the treat-ment of diabetes mellitus.Zhang et al observed the therapeutic effect of tenelig-liptin on cardiac function in mice with DCM.They validated that teneligliptin’s mechanism of action in treating DCM involves cardiomyocyte protection and inhibition of NLRP3 inflammasome activity.Given that the NLRP3 inflammasome plays a crucial role in the onset and progression of DCM,it presents a promising therapeutic target.Nevertheless,further clinical validation is required to ascertain the preventive and therapeutic efficacy of teneligliptin in DCM.展开更多
To determine the molecular mechanism of cerebral ischemia/reperfusion injury, we examined the micro RNA(mi RNA) expression profile in rat cortex after focal cerebral ischemia/reperfusion injury using mi RNA microarr...To determine the molecular mechanism of cerebral ischemia/reperfusion injury, we examined the micro RNA(mi RNA) expression profile in rat cortex after focal cerebral ischemia/reperfusion injury using mi RNA microarrays and bioinformatic tools to systematically analyze Gene Ontology(GO) function classifications, as well as the signaling pathways of genes targeted by these differentially expressed mi RNAs. Our results show significantly changed mi RNA expression profiles in the reperfusion period after focal cerebral ischemia, with a total of 15 mi RNAs up-regulated and 44 mi RNAs down-regulated. Target genes of these differentially expressed mi RNAs were mainly involved in metabolic and cellular processes, which were identified as hub nodes of a mi RNA-GO-network. The most correlated pathways included D-glutamine and D-glutamate metabolism, the renin-angiotensin system, peroxisomes, the PPAR signaling pathway, SNARE interactions in vesicular transport, and the calcium signaling pathway. Our study suggests that mi RNAs play an important role in the pathological process of cerebral ischemia/reperfusion injury. Understanding mi RNA expression and function may shed light on the molecular mechanism of cerebral ischemia/reperfusion injury.展开更多
基金supported by the National Natural Science Foundation of China,Nos.31730031,32130060the National Natural Science Foundation of China,No.31971276(to JH)+1 种基金the Natural Science Foundation of Jiangsu Province,No.BK20202013(to XG)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Major Program),No.19KJA320005(to JH)。
文摘Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.
基金Supported by National High Technology Research and Development Program of China(863 Program,Grant No.2015AA042503)K.C.Wong Education Foundation.
文摘Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion(PBF)process.In this study,a dynamic monitoring and feedback system of powder bed temperature field using an infrared thermal imager has been established and integrated into a four-laser PBF equipment with a working area of 2000 mm×2000 mm.The heat-affected zone(HAZ)temperature field has been controlled by adjusting the scanning speed dynamically.Simultaneously,the relationship among spot size,HAZ temperature,and part performance has been established.The fluctuation of the HAZ temperature in four-laser scanning areas was decreased from 30.85℃to 17.41℃.Thus,the consistency of the sintering performance of the produced large component has been improved.Based on the controllable temperature field,a dynamically adjusting strategy for laser spot size was proposed,by which the fabrication efficiency was improved up to 65.38%.The current research results were of great significance to the further industrial applications of large-scale PBF equipment.
基金supported by the National Natural Science Foundation of China(Nos.31800369,32271686,U1904204)the State Scholarship Fund of Chinathe Innovation Scientists and Technicians Troop Construction Projects of Henan Province(No.182101510005)。
文摘Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and phosphorus(P)in forest plant-soil-microbe systems remains unclear.Methods:We conducted a meta-analysis based on 751 pairs of observations to evaluate the responses of plant,soil and microbial biomass C,N and P nutrients and stoichiometry to N addition in different N intensity(050,50–100,>100 kg·ha^(-1)·year^(-1)of N),duration(0–5,>5 year),method(understory,canopy),and matter(ammonium N,nitrate N,organic N,mixed N).Results:N addition significantly increased plant N:P(leaf:14.98%,root:13.29%),plant C:P(leaf:6.8%,root:25.44%),soil N:P(13.94%),soil C:P(10.86%),microbial biomass N:P(23.58%),microbial biomass C:P(12.62%),but reduced plant C:N(leaf:6.49%,root:9.02%).Furthermore,plant C:N:P stoichiometry changed significantly under short-term N inputs,while soil and microorganisms changed drastically under high N addition.Canopy N addition primarily affected plant C:N:P stoichiometry through altering plant N content,while understory N inputs altered more by influencing soil C and P content.Organic N significantly influenced plant and soil C:N and C:P,while ammonia N changed plant N:P.Plant C:P and soil C:N were strongly correlated with mean annual precipitation(MAT),and the C:N:P stoichiometric flexibility in soil and plant under N addition connected with soil depth.Besides,N addition decoupled the correlations between soil microorganisms and the plant.Conclusions:N addition significantly increased the C:P and N:P in soil,plant,and microbial biomass,reducing plant C:N,and aggravated forest P limitations.Significantly,these impacts were contingent on climate types,soil layers,and N input forms.The findings enhance our comprehension of the plant-soil system nutrient cycling mechanisms in forest ecosystems and plant strategy responses to N deposition.
基金Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120011)Medical Research,Foshan Health and Wellness Department(No.20220374).
文摘AIM:To assess the efficacy of artificial natural light in preventing incident myopia in primary school-age children.METHODS:This is a prospective,randomized control,intervention study.A total of 1840 students from 39 classes in 4 primary schools in Foshan participated in this study.The whole randomization method was adopted to include classes as a group according to 1:1 randomized control.Classrooms in the control group were illuminated by usual light,and classrooms in the intervention group were illuminated by artificial natural light.All students received uncorrected visual acuity and best-corrected visual acuity measurement,non-cycloplegic autorefraction,ocular biometric examination,slit lamp and strabismus examination.Three-year follow-up,the students underwent same procedures.Myopia was defined as spherical equivalent refraction≤-0.50 D and uncorrected visual acuity<20/20.RESULTS:There were 894 students in the control group and 946 students in the intervention group with a mean±SD age of 7.50±0.53y.The three-year cumulative incidence rate of myopia was 26.4%(207 incident cases among 784 eligible participants at baseline)in the control group and 21.2%(164 incident cases among 774 eligible participants at baseline)in the intervention group[difference of 5.2%(95%CI,3.7%to 10.1%);P=0.035].There was also a significant difference in the three-year change in spherical equivalent refraction for the control group(-0.81 D)compared with the intervention group[-0.63 D;difference of 0.18 D(95%CI,0.08 to 0.28 D);P<0.001].Elongation of axial length was significantly different between in the control group(0.77 mm)and the intervention group[0.72 mm;difference of 0.05 mm(95%CI,0.01 to 0.09 mm);P=0.003].CONCLUSION:Artificial natural light in the classroom of primary schools can result in reducing incidence rate of myopia during a period of three years.
基金Supported by National Natural Science Foundation of China,No.82104862Zhejiang Provincial Natural Science Foundation of China,No.LTY22E030003Scientific Research Project Foundation of Zhejiang Chinese Medical University,No.2023FSYYZZ01.
文摘BACKGROUND Shikonin is a natural remedy that is effective at treating diabetic wounds.NFAT5 is a potential therapeutic target for diabetes,and mitochondrial function is essen-tial for wound healing.However,the relationship among Shikonin,NFAT5,and mitochondrial function has not been thoroughly studied.Here,we offer new per-spectives on the advantages of shikonin for managing diabetes.AIM To assess the therapeutic mechanism of shikonin in diabetic wounds,its rela-tionship with NFAT5,and its protection of mitochondrial function.METHODS Hypertonic cell and diabetic wound mouse models were established.NFAT5 expression was measured through western blotting and immunofluorescence,in vivo and in vitro.Mitochondrial function was evaluated using reactive oxygen species(ROS)detection and JC-1 and Calcein AM dyes.Mitochondrial structures were observed using transmission electron microscopy.The NFAT5/AMPK pathway was analyzed using a transfection vector and an inhibitor.The effect of shikonin on cells under hypertonic conditions via the NFAT5/AMPK pathway was assessed using western blotting.RESULTS Shikonin treatment preserved HaCaT cell viability,while significantly reducing cyclooxygenase-2 expression levels in a high-glucose environment(P<0.05).Additionally,shikonin maintained mitochondrial morphology,enhanced membrane potential,reduced membrane permeability,and decreased ROS levels in HaCaT cells under hyperosmolar stress.Furthermore,shikonin promoted wound healing in diabetic mice(P<0.05).Shikonin also inhibited NFAT5,in vivo and in vitro(P<0.05).Shikonin treatment reduced NFAT5 expression levels,subsequently inhibiting AMPK expression in vitro(P<0.05).Finally,shikonin inhibited several key downstream molecules of the NFAT5/AMPK pathway,including mammalian target of rapamycin,protein kinase B,nuclear factor kappa-light-chain-enhancer of activated B cells,and inducible nitric oxide synthase(P<0.05).CONCLUSION Shikonin protects mitochondria via the NFAT5/AMPK-related pathway and enhances wound healing in diabetes.
文摘Diabetic cardiomyopathy(DCM),a complication of diabetes,poses a significant threat to public health,both its diagnosis and treatment presents challenges.Teneligliptin has promising applications and research implications in the treat-ment of diabetes mellitus.Zhang et al observed the therapeutic effect of tenelig-liptin on cardiac function in mice with DCM.They validated that teneligliptin’s mechanism of action in treating DCM involves cardiomyocyte protection and inhibition of NLRP3 inflammasome activity.Given that the NLRP3 inflammasome plays a crucial role in the onset and progression of DCM,it presents a promising therapeutic target.Nevertheless,further clinical validation is required to ascertain the preventive and therapeutic efficacy of teneligliptin in DCM.
基金The National Engineering Laboratory for Wheat&Corn Further Processing(NL2016012)The Innovation Scientists and Technicians Troop Construction Projects of Henan Province(114100510015)The Nature Science Foundation of Education Department of Henan Province(16A413003)
基金Supported by The National Key Basic Research Project,No.2012CB517501Chinese Foundation for Hepatitis Prevention and Control–"WANG Bao-En"Liver Fibrosis Research Fund,No.XJS20120501+1 种基金Shanghai Science and Technology Committee,No.09140903500 and No.10411956300the 100-Talents Program of the Shanghai Municipal Health Bureau,No.XBR2011007
文摘AIM: To evaluate the performance of a novel non-invasive controlled attenuation parameter (CAP) to assess liver steatosis.
基金supported by grants from the National Natural Science Foundation of ChinaNo.81271358+1 种基金Yunnan Science Foundation of ChinaNo.2013FZ199
文摘To determine the molecular mechanism of cerebral ischemia/reperfusion injury, we examined the micro RNA(mi RNA) expression profile in rat cortex after focal cerebral ischemia/reperfusion injury using mi RNA microarrays and bioinformatic tools to systematically analyze Gene Ontology(GO) function classifications, as well as the signaling pathways of genes targeted by these differentially expressed mi RNAs. Our results show significantly changed mi RNA expression profiles in the reperfusion period after focal cerebral ischemia, with a total of 15 mi RNAs up-regulated and 44 mi RNAs down-regulated. Target genes of these differentially expressed mi RNAs were mainly involved in metabolic and cellular processes, which were identified as hub nodes of a mi RNA-GO-network. The most correlated pathways included D-glutamine and D-glutamate metabolism, the renin-angiotensin system, peroxisomes, the PPAR signaling pathway, SNARE interactions in vesicular transport, and the calcium signaling pathway. Our study suggests that mi RNAs play an important role in the pathological process of cerebral ischemia/reperfusion injury. Understanding mi RNA expression and function may shed light on the molecular mechanism of cerebral ischemia/reperfusion injury.