Under investigation in this paper is a generalized(3+1)-dimensional Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics.Soliton and one-periodic-wave solutions are obtained via the Hirota bilinear met...Under investigation in this paper is a generalized(3+1)-dimensional Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics.Soliton and one-periodic-wave solutions are obtained via the Hirota bilinear method and Hirota-Riemann method.Magnitude and velocity of the one soliton are derived.Graphs are presented to discuss the solitons and one-periodic waves:the coefficients in the equation can determine the velocity components of the one soliton,but cannot alter the soliton magnitude;the interaction between the two solitons is elastic;the coefficients in the equation can influence the periods and velocities of the periodic waves.Relation between the one-soliton solution and one-periodic wave solution is investigated.展开更多
In this paper,we investigate a(2+1)-dimensional variable-coefficient modified dispersive waterwave system in fluid mechanics.We prove the Painlevéintegrability for that system via the Painlevéanalysis.We fin...In this paper,we investigate a(2+1)-dimensional variable-coefficient modified dispersive waterwave system in fluid mechanics.We prove the Painlevéintegrability for that system via the Painlevéanalysis.We find some auto-B?cklund transformations for that system via the truncated Painlevéexpansions.Bilinear forms and N-soliton solutions are constructed,where N is a positive integer.We discuss the inelastic interactions,elastic interactions and soliton resonances for the two solitons.We also graphically demonstrate that the velocities of the solitons are affected by the variable coefficient of that system.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.11272023by the Fundamental Research Funds for the Central Universities under Grant No.50100002016105010。
文摘Under investigation in this paper is a generalized(3+1)-dimensional Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics.Soliton and one-periodic-wave solutions are obtained via the Hirota bilinear method and Hirota-Riemann method.Magnitude and velocity of the one soliton are derived.Graphs are presented to discuss the solitons and one-periodic waves:the coefficients in the equation can determine the velocity components of the one soliton,but cannot alter the soliton magnitude;the interaction between the two solitons is elastic;the coefficients in the equation can influence the periods and velocities of the periodic waves.Relation between the one-soliton solution and one-periodic wave solution is investigated.
基金the National Natural Science Foundation of China under Grant No.11772017the Fundamental Research Funds for the Central Universities
文摘In this paper,we investigate a(2+1)-dimensional variable-coefficient modified dispersive waterwave system in fluid mechanics.We prove the Painlevéintegrability for that system via the Painlevéanalysis.We find some auto-B?cklund transformations for that system via the truncated Painlevéexpansions.Bilinear forms and N-soliton solutions are constructed,where N is a positive integer.We discuss the inelastic interactions,elastic interactions and soliton resonances for the two solitons.We also graphically demonstrate that the velocities of the solitons are affected by the variable coefficient of that system.