Occurrence of neurofibrillary tangles of the tau protein is a hallmark of tau-related neurodegenerative diseases, i.e. Alzheimer's disease(AD) and frontotemporal dementia. The pathological mechanism underlying AD ...Occurrence of neurofibrillary tangles of the tau protein is a hallmark of tau-related neurodegenerative diseases, i.e. Alzheimer's disease(AD) and frontotemporal dementia. The pathological mechanism underlying AD remains poorly understood, and effective treatments are still unavailable to mitigate the disease.Inhibiting of tau aggregation and disrupting the existing fibrils are key targets in drug discovery towards preventing or curing AD. In this study, grape seed proanthocyanidins(GSPs) was found to effectively inhibit the repeat domain of tau(tau-RD) aggregation and disaggregate tau-RD fibrils in a concentrationdependent manner by inhibiting β-sheet formation of tau-RD. In cells, GSPs relieved cytotoxicity induced by tau-RD aggregates. Molecular dynamics simulations indicated that strong hydrogen bonding,hydrophobic interaction and π-π stacking between GSPs and tau-RD protein were major reasons why GSPs had high inhibitory activity on tau-RD fibrillogenesis. These results provide preliminary data to develop GSPs into medicines, foodstuffs or nutritional supplements for AD patients, suggesting that GSPs could be a candidate molecule in the drug design for AD therapeutics.展开更多
Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce glo...Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce global dependence on petroleum resources. Cellulose is known as the most abundant renewable polymer in nature, varieties of cellulose-based products have been developed and have gained growing interest in recent years. In this review, a kind of water-soluble cellulose derivative, i.e., sodium cellulose sulfate (NaCS) is introduced. Details about NaCS's physicochemical properties like solubility, biocompatibility, biodegradability, degree of substitution, etc. are systematically elaborated. And promising applications of NaCS used as biomaterials for microcarriers' designing, such as microcell- carriers, micro-drug-carriers, etc., are presented.展开更多
基金supported by the National Natural Science Foundation of China (21878262)。
文摘Occurrence of neurofibrillary tangles of the tau protein is a hallmark of tau-related neurodegenerative diseases, i.e. Alzheimer's disease(AD) and frontotemporal dementia. The pathological mechanism underlying AD remains poorly understood, and effective treatments are still unavailable to mitigate the disease.Inhibiting of tau aggregation and disrupting the existing fibrils are key targets in drug discovery towards preventing or curing AD. In this study, grape seed proanthocyanidins(GSPs) was found to effectively inhibit the repeat domain of tau(tau-RD) aggregation and disaggregate tau-RD fibrils in a concentrationdependent manner by inhibiting β-sheet formation of tau-RD. In cells, GSPs relieved cytotoxicity induced by tau-RD aggregates. Molecular dynamics simulations indicated that strong hydrogen bonding,hydrophobic interaction and π-π stacking between GSPs and tau-RD protein were major reasons why GSPs had high inhibitory activity on tau-RD fibrillogenesis. These results provide preliminary data to develop GSPs into medicines, foodstuffs or nutritional supplements for AD patients, suggesting that GSPs could be a candidate molecule in the drug design for AD therapeutics.
基金China Postdoctoral Science Foundation (No. 2017M611998)the National Natural Science Foundation of China (Grant Nos. 21606002 and 21576233)+2 种基金the Natural Science Foundation of Anhui Province (CN)(No. 1708085QC64)the Doctoral Research Start-up Fund of Anhui University (J01001319)the Undergraduate Research Training Programs for Innovation (Nos. KYXL2017036, 201710357034 and 201710357268).
文摘Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce global dependence on petroleum resources. Cellulose is known as the most abundant renewable polymer in nature, varieties of cellulose-based products have been developed and have gained growing interest in recent years. In this review, a kind of water-soluble cellulose derivative, i.e., sodium cellulose sulfate (NaCS) is introduced. Details about NaCS's physicochemical properties like solubility, biocompatibility, biodegradability, degree of substitution, etc. are systematically elaborated. And promising applications of NaCS used as biomaterials for microcarriers' designing, such as microcell- carriers, micro-drug-carriers, etc., are presented.