Video colorization aims to add color to grayscale or monochrome videos.Although existing methods have achieved substantial and noteworthy results in the field of image colorization,video colorization presents more for...Video colorization aims to add color to grayscale or monochrome videos.Although existing methods have achieved substantial and noteworthy results in the field of image colorization,video colorization presents more formidable obstacles due to the additional necessity for temporal consistency.Moreover,there is rarely a systematic review of video colorization methods.In this paper,we aim to review existing state-of-the-art video colorization methods.In addition,maintaining spatial-temporal consistency is pivotal to the process of video colorization.To gain deeper insight into the evolution of existing methods in terms of spatial-temporal consistency,we further review video colorization methods from a novel perspective.Video colorization methods can be categorized into four main categories:optical-flow based methods,scribble-based methods,exemplar-based methods,and fully automatic methods.However,optical-flow based methods rely heavily on accurate optical-flow estimation,scribble-based methods require extensive user interaction and modifications,exemplar-based methods face challenges in obtaining suitable reference images,and fully automatic methods often struggle to meet specific colorization requirements.We also discuss the existing challenges and highlight several future research opportunities worth exploring.展开更多
More and more nanomaterials enter the environment along with their production, application and deposal. They may alter the biological effect of pollutants already existing in the real environment by different interact...More and more nanomaterials enter the environment along with their production, application and deposal. They may alter the biological effect of pollutants already existing in the real environment by different interactions. Therefore efforts should also be paid to investigate the combined toxicity of nanomaterials and pollutants. Herein, we studied the combined toxicity of oxi- dized multi-walled carbon nanotubes (O-MWCNTs) and zinc ions on ceils. It is found that cytotoxicity of the combined O-MWCNTs and zinc ions elevates significantly, compared with O-MWCNTs or zinc ions alone. This result comes from the assays of cell morphology, cell viability and proliferation, cell membrane integrity, mitochondrial membrane potential and cell apoptosis. Mechanism studies indicate that O-MWCNTs absorb zinc ions and form slight aggregation. These enhance remark- ably the cellular uptake of O-MWCNTs, and thus induce the death of cells by bringing in more zinc ions into cells. Our study indicates that the existence of nanomaterials could change the bioconsequence of other pollutants and emphasizes the im- portance of the combined toxicity research in the presence of nanomaterials.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.U22B2049 and 62332010.
文摘Video colorization aims to add color to grayscale or monochrome videos.Although existing methods have achieved substantial and noteworthy results in the field of image colorization,video colorization presents more formidable obstacles due to the additional necessity for temporal consistency.Moreover,there is rarely a systematic review of video colorization methods.In this paper,we aim to review existing state-of-the-art video colorization methods.In addition,maintaining spatial-temporal consistency is pivotal to the process of video colorization.To gain deeper insight into the evolution of existing methods in terms of spatial-temporal consistency,we further review video colorization methods from a novel perspective.Video colorization methods can be categorized into four main categories:optical-flow based methods,scribble-based methods,exemplar-based methods,and fully automatic methods.However,optical-flow based methods rely heavily on accurate optical-flow estimation,scribble-based methods require extensive user interaction and modifications,exemplar-based methods face challenges in obtaining suitable reference images,and fully automatic methods often struggle to meet specific colorization requirements.We also discuss the existing challenges and highlight several future research opportunities worth exploring.
基金supported by the National Basic Research Program of China (2011CB933402)the National Natural Science Foundation of China (21371117, 31571024)
文摘More and more nanomaterials enter the environment along with their production, application and deposal. They may alter the biological effect of pollutants already existing in the real environment by different interactions. Therefore efforts should also be paid to investigate the combined toxicity of nanomaterials and pollutants. Herein, we studied the combined toxicity of oxi- dized multi-walled carbon nanotubes (O-MWCNTs) and zinc ions on ceils. It is found that cytotoxicity of the combined O-MWCNTs and zinc ions elevates significantly, compared with O-MWCNTs or zinc ions alone. This result comes from the assays of cell morphology, cell viability and proliferation, cell membrane integrity, mitochondrial membrane potential and cell apoptosis. Mechanism studies indicate that O-MWCNTs absorb zinc ions and form slight aggregation. These enhance remark- ably the cellular uptake of O-MWCNTs, and thus induce the death of cells by bringing in more zinc ions into cells. Our study indicates that the existence of nanomaterials could change the bioconsequence of other pollutants and emphasizes the im- portance of the combined toxicity research in the presence of nanomaterials.