The effective connection of 1050 Al and AZ31 Mg was realized by magnetic pulse welding.The maximum tensile-shear force of the dissimilar Al/Mg metal lap joint reached 97%of that of the 1050 Al alloy base material by o...The effective connection of 1050 Al and AZ31 Mg was realized by magnetic pulse welding.The maximum tensile-shear force of the dissimilar Al/Mg metal lap joint reached 97%of that of the 1050 Al alloy base material by optimizing the process parameters.The microstructure of dissimilar Al/Mg welded joints was analysed by Scanning Electron Microscope(SEM),Energy Dispersive Spectrometer(EDS)and Electron Backscattered Diffraction(EBSD).The results show that the key to obtaining high shear strength of Al/Mg dissimilar metal joints is mainly due to the following two reasons.On the one hand,grain refinement and element interdiffusion occur at the interface.On the other hand,no intermetallic compounds are formed at the interface.展开更多
In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,w...In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.展开更多
To address the increasing need for detecting and validating protein biomarkers in clinical specimens,mass spectrometry(MS)-based targeted proteomic techniques,including the selected reaction monitoring(SRM),parallel r...To address the increasing need for detecting and validating protein biomarkers in clinical specimens,mass spectrometry(MS)-based targeted proteomic techniques,including the selected reaction monitoring(SRM),parallel reaction monitoring(PRM),and massively parallel dataindependent acquisition(DIA),have been developed.For optimal performance,they require the fragment ion spectra of targeted peptides as prior knowledge.In this report,we describe a MS pipeline and spectral resource to support targeted proteomics studies for human tissue samples.To build the spectral resource,we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker.We then applied the workflow to generate DPHL,a comprehensive DIA pan-human library,from 1096 data-dependent acquisition(DDA)MS raw files for 16 types of cancer samples.This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer(PCa)patients.Thereafter,PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated.As a second application,the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma(DLBCL)patients and 18 healthy control subjects.Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM.These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery.DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000.展开更多
Integration of human papillomavirus(HPV)DNA into the human genome is a reputed key driver of cervical cancer.However,the effects of HPV integration on chromatin structural organization and gene expression are largely ...Integration of human papillomavirus(HPV)DNA into the human genome is a reputed key driver of cervical cancer.However,the effects of HPV integration on chromatin structural organization and gene expression are largely unknown.We studied a cohort of 61 samples and identified an integration hot spot in the CCDC106 gene on chromosome 19.We then selected fresh cancer tissue that contained the unique integration loci at CCDC106 with no HPV episomal DNA and performed whole-genome,RNA,chromatin immunoprecipitation and high-throughput chromosome conformation capture(Hi-C)sequencing to identify the mechanisms of HPV integration in cervical carcinogenesis.Molecular analyses indicated that chromosome 19 exhibited significant genomic variation and differential expression densities,with correlation found between three-dimensional(3D)structural change and gene expression.Importantly,HPV integration divided one topologically associated domain(TAD)into two smaller TADs and hijacked an enhancer from PEG3 to CCDC106,with a decrease in PEG3 expression and an increase in CCDC106 expression.This expression dysregulation was further confirmed using 10 samples from our cohort,which exhibited the same HPV-CCDC106 integration.In summary,we found that HPV-CCDC106 integration altered local chromosome architecture and hijacked an enhancer via 3D genome structure remodeling.Thus,this study provides insight into the 3D structural mechanism underlying HPV integration in cervical carcinogenesis.展开更多
基金supported by National Natural Science Foundation of China(No.51474101,51975202)the equipment pre-research project of China(Nos.41422060204)the Natural Science Foundation of Hunan Province(2019JJ30005).
文摘The effective connection of 1050 Al and AZ31 Mg was realized by magnetic pulse welding.The maximum tensile-shear force of the dissimilar Al/Mg metal lap joint reached 97%of that of the 1050 Al alloy base material by optimizing the process parameters.The microstructure of dissimilar Al/Mg welded joints was analysed by Scanning Electron Microscope(SEM),Energy Dispersive Spectrometer(EDS)and Electron Backscattered Diffraction(EBSD).The results show that the key to obtaining high shear strength of Al/Mg dissimilar metal joints is mainly due to the following two reasons.On the one hand,grain refinement and element interdiffusion occur at the interface.On the other hand,no intermetallic compounds are formed at the interface.
基金the National Natural Science Foundation of China under Grant 61502411Natural Science Foundation of Jiangsu Province under Grant BK20150432 and BK20151299+7 种基金Natural Science Research Project for Universities of Jiangsu Province under Grant 15KJB520034China Postdoctoral Science Foundation under Grant 2015M581843Jiangsu Provincial Qinglan ProjectTeachers Overseas Study Program of Yancheng Institute of TechnologyJiangsu Provincial Government Scholarship for Overseas StudiesTalents Project of Yancheng Institute of Technology under Grant KJC2014038“2311”Talent Project of Yancheng Institute of TechnologyOpen Fund of Modern Agricultural Resources Intelligent Management and Application Laboratory of Huzhou Normal University.
文摘In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.
基金supported by the National Natural Science Foundation of China(Grant No.81972492)National Science Fund for Young Scholars(Grant No.21904107)+7 种基金Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars(Grant No.LR19C050001)Hangzhou Agriculture and Society Advancement Program(Grant No.20190101A04)Westlake Startup Grantresearch funds from the National Cancer Centre Singapore and Singapore General Hospital,Singaporethe National Key R&D Program of China(Grant No.2016YFC0901704)Zhejiang Innovation Discipline Project of Laboratory Animal Genetic Engineering(Grant No.201510)the Netherlands Cancer Society(Grant No.NKI 2014-6651)The Netherlands Organization for Scientific Research(NWO)-Middelgroot(Grant No.91116017)
文摘To address the increasing need for detecting and validating protein biomarkers in clinical specimens,mass spectrometry(MS)-based targeted proteomic techniques,including the selected reaction monitoring(SRM),parallel reaction monitoring(PRM),and massively parallel dataindependent acquisition(DIA),have been developed.For optimal performance,they require the fragment ion spectra of targeted peptides as prior knowledge.In this report,we describe a MS pipeline and spectral resource to support targeted proteomics studies for human tissue samples.To build the spectral resource,we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker.We then applied the workflow to generate DPHL,a comprehensive DIA pan-human library,from 1096 data-dependent acquisition(DDA)MS raw files for 16 types of cancer samples.This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer(PCa)patients.Thereafter,PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated.As a second application,the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma(DLBCL)patients and 18 healthy control subjects.Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM.These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery.DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000.
基金supported by the National Natural Science Foundation of China(81630060 to P.W.,31771402 to G.L.,81830074 and 81772786 to H.W.,81572569 to G.C.,and 81772775 to J.W.)National Science and Technology Major Project(2019YFC1005202 and 2019YFC1005201 to K.L.,and 2018ZX10301402-002 to Q.G.)the research-oriented clinician funding program of Tongji Medical College,Huazhong University of Science and Technology for P.W
文摘Integration of human papillomavirus(HPV)DNA into the human genome is a reputed key driver of cervical cancer.However,the effects of HPV integration on chromatin structural organization and gene expression are largely unknown.We studied a cohort of 61 samples and identified an integration hot spot in the CCDC106 gene on chromosome 19.We then selected fresh cancer tissue that contained the unique integration loci at CCDC106 with no HPV episomal DNA and performed whole-genome,RNA,chromatin immunoprecipitation and high-throughput chromosome conformation capture(Hi-C)sequencing to identify the mechanisms of HPV integration in cervical carcinogenesis.Molecular analyses indicated that chromosome 19 exhibited significant genomic variation and differential expression densities,with correlation found between three-dimensional(3D)structural change and gene expression.Importantly,HPV integration divided one topologically associated domain(TAD)into two smaller TADs and hijacked an enhancer from PEG3 to CCDC106,with a decrease in PEG3 expression and an increase in CCDC106 expression.This expression dysregulation was further confirmed using 10 samples from our cohort,which exhibited the same HPV-CCDC106 integration.In summary,we found that HPV-CCDC106 integration altered local chromosome architecture and hijacked an enhancer via 3D genome structure remodeling.Thus,this study provides insight into the 3D structural mechanism underlying HPV integration in cervical carcinogenesis.