期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
深低温保存下高效抗冻多肽的合理设计和机理探讨 被引量:1
1
作者 Haishan Qi yihang gao +6 位作者 Lin Zhang Zhongxin Cui Xiaojie Sui Jianfan Ma Jing Yang Zhiquan Shu Lei Zhang 《Engineering》 SCIE EI CAS CSCD 2024年第3期164-173,共10页
The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth invest... The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth investigation of repetitive motifs in various ice-binding proteins(IBPs)with evolution analysis.In this way,several peptides with notable antifreeze activity were developed.In particular,a designed antifreeze peptide named AVD exhibits ideal ice recrystallization inhibition(IRI),solubility,and biocompatibility,making it suitable for use as a cryoprotective agent(CPA).A mutation analysis and molecular dynamics(MD)simulations indicated that the Thr6 and Asn8 residues of the AVD peptide are fundamental to its ice-binding capacity,while the Ser18 residue can synergistically enhance their interaction with ice,revealing the antifreeze mechanism of AVD.Furthermore,to evaluate the cryoprotection potential of AVD,the peptide was successfully employed for the cryopreservation of various cells,which demonstrated significant post-freezing cell recovery.This work opens up a new avenue for designing antifreeze materials and provides peptide-based functional modules for synthetic biology. 展开更多
关键词 Antifreeze peptides Evolution analysis Ice recrystallization inhibition Molecular dynamics simulation CRYOPRESERVATION Synthetic biology
下载PDF
外泌体:精准肿瘤学的明星 被引量:1
2
作者 高弈航 黄国翔 +2 位作者 唐玉国 黄映辉 高山 《科学通报》 EI CAS CSCD 北大核心 2018年第23期2361-2368,共8页
外泌体是指由细胞分泌具有生物活性的囊泡,它直径一般为30~150 nm,具有脂质双层膜.外泌体包含了分泌细胞的分子,如酯类、蛋白质和核酸等.外泌体在生命体内承担着传递生物分子以及帮助细胞之间信息交流的角色.本文介绍了外泌体的定义、... 外泌体是指由细胞分泌具有生物活性的囊泡,它直径一般为30~150 nm,具有脂质双层膜.外泌体包含了分泌细胞的分子,如酯类、蛋白质和核酸等.外泌体在生命体内承担着传递生物分子以及帮助细胞之间信息交流的角色.本文介绍了外泌体的定义、组成以及受体细胞内吞外泌体的方式,探讨了外泌体在癌症液体活检以及在肿瘤发生、发展、转移和逃避免疫监视中的作用.系统地总结了外泌体作为肿瘤发生、发展以及恶性程度的生物标志物的研究进展,并进一步探讨了外泌体在肿瘤治疗中作为治疗靶点以及载体所起到的作用和意义.最后对外泌体在临床中的潜在应用进行了展望,为今后肿瘤诊断治疗提供新的思路. 展开更多
关键词 外泌体 肿瘤 生物标志物 诊断治疗 精准医学
原文传递
Coupling Effect of Morphology and Mechanical Properties Contributes to the Tribological Behaviors of Snake Scales 被引量:5
3
作者 Long Zheng Yinghui Zhong +4 位作者 yihang gao Jiayi Li Zhihui Zhang Zhenning Liu Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2018年第3期481-493,共13页
It is known that the tribological behaviors of snake skins are contributed by the synergistic action of multiple factors, such as surface morphology and mechanical properties, which has inspired fabrication of scale-l... It is known that the tribological behaviors of snake skins are contributed by the synergistic action of multiple factors, such as surface morphology and mechanical properties, which has inspired fabrication of scale-like surface textures in recent years. However, the coupling effect and mechanism remain to be elucidated. In this work, the morphology and mechanical properties of the scales from different body sections (leading body half, middle trunk and tailing body half) and positions (dorsal, lateral and ventral) of Boa constrictor and Eryx tataricus were characterized and compared to investigate the corresponding effects on the tribological behaviors and to probe the possible coupling mechanism. The morphological characterizations of scanning electron microscopy and atomic force microscopy revealed sig- nificant differences between the two species that the scales from Boa constrictor are rougher in general. The mechanical properties measured by nanoindentation corroboratively demonstrated substantial differences in elastic modulus and hardness. Interestingly, the ventral scales with lower surface roughness, together with relatively larger elastic modulus and hardness, manifest higher friction coefficients. A "double-crossed" hypothesis was proposed to explain the observed coupling effect of morphology and mechanical properties on friction, which may afford valuable insights for the design of bionic surface with desirable tribological performance. 展开更多
关键词 BIONICS coupling effect friction coefficient MORPHOLOGY mechanical properties snake scales
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部