In recent years,motor drive systems have garnered increasing attention due to their high efficiency and superior control performance.This is especially apparent in aerospace,marine propulsion,and electric vehicles,whe...In recent years,motor drive systems have garnered increasing attention due to their high efficiency and superior control performance.This is especially apparent in aerospace,marine propulsion,and electric vehicles,where high performance,efficiency,and reliability are crucial.The ability of the drive system to maintain long-term fault-tolerant control(FTC)operation after a failure is essential.The likelihood of inverter failures surpasses that of other components in the drive system,highlighting its critical importance.Long-term FTC operation ensures the system retains its fundamental functions until safe repairs or replacements can be made.The focus of developing a FTC strategy has shifted from basic FTC operations to enhancing the post-fault quality to accommodate the realities of prolonged operation post-failure.This paper primarily investigates FTC strategies for inverter failures in various motor drive systems over the past decade.These strategies are categorized into three types based on post-fault operational quality:rescue,remedy,and reestablishment.The paper discusses each typical control strategy and its research focus,the strengths and weaknesses of various algorithms,and recent advancements in FTC.Finally,this review summarizes effective FTC techniques for inverter failures in motor drive systems and suggests directions for future research.展开更多
THE rapid growth of new energy vehicles is accelerating the low-carbon transition in the global transportation sector. According to the international energy agency report, more than 10 million electric vehicles(EVs) i...THE rapid growth of new energy vehicles is accelerating the low-carbon transition in the global transportation sector. According to the international energy agency report, more than 10 million electric vehicles(EVs) including pure electric and hybrid models were sold worldwide in 2022, which means that the global share of electric vehicles in the overall automotive market has risen from less than 5% in 2020 to 14% in 2022.展开更多
At present, research into optical properties of bio-smoke materials mostly concentrates on single band or single germplasm. Herein, we measured the spectral reflectance of three eukaryotic bio-smoke materials and thre...At present, research into optical properties of bio-smoke materials mostly concentrates on single band or single germplasm. Herein, we measured the spectral reflectance of three eukaryotic bio-smoke materials and three prokaryotic bio-smoke materials in the waveband from 0.25 μm to 14μm. Based on the Kramers-Kroning algorithm, the complex refractive index m(λ) was calculated and the Fourier-transform infrared(FTIR) spectra of materials were analyzed. The results show that n(λ) of bio-smoke materials varies between 1.1-2, and n(λ) values in the visible light to near-infrared wavebands are significantly larger than those in other wavebands. The k(λ) of bio-smoke materials varies between 0-0.4.At 6-6.5 μm, k(λ) of prokaryotic materials is 3 times that of eukaryotic materials, which is caused by C=O stretching vibration of amide I and C-N stretching vibration of amide Ⅱ in proteins. At 2.5-3 μm and 9.75 μm, k(λ) values of eukaryotic bio-smoke materials are nearly 2 times that of prokaryotic ones. The absorption peak at 2.5-3 μm is mainly triggered by C-H stretching vibration in lipid and O-H stretching vibration in bound water. The absorption peak at 9.75 μm is mainly caused by symmetric stretching vibration of PO2-in nucleic acids.展开更多
Power&signal multiplex transmission(P&SMT)is a technique that uses power electronic circuits for communication signal transmission.In this paper,a three-phase cascaded multilevel inverter-based P&S MT syst...Power&signal multiplex transmission(P&SMT)is a technique that uses power electronic circuits for communication signal transmission.In this paper,a three-phase cascaded multilevel inverter-based P&S MT system is proposed.The proposed method can transmit communication signals without using a Controller Area Network bus,thereby reducing the wiring cost of the conventional electric vehicle(EV)communication system.The designed system can achieve motor speed regulation and battery balance discharging for EVs.With the combined pulse width modulation scheme and frequency shift keying method,both power and communication signals are transmitted successfully in a simulation model implemented in Matlab/Simulink.By evaluating the bit error rate of the transmitted signal,the maximum signal rate of the proposed system is determined as 600 bit/s.展开更多
To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a syn...To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS.展开更多
A plasmonic filter and sensor is designed based on an end-coupled ring-groove composited resonator(RGCR).According to the magnetic field distributions of the resonance modes,a horizontal or vertical groove is added to...A plasmonic filter and sensor is designed based on an end-coupled ring-groove composited resonator(RGCR).According to the magnetic field distributions of the resonance modes,a horizontal or vertical groove is added to the perfect ring resonator,and the transmission peaks for the 1st and the 2nd modes can be linearly changed by the length of the groove.In this case,the proposed structure can act as an on-chip optical filter with flexible wavelength manipulation.When the groove is rotated with an angle of?/4,Fano resonance arises due to the mode interference.Dual asymmetric sharp transmission peaks are achieved around the wavelength of the former 2nd resonance mode.High figure of merit and high sensitivity are obtained for the structure,and it is believed that the device can find widely applications in the biochemistry sensing area.The corresponding spectra and the propagation characteristics are numerically investigated by using the finite-difference time-domain method.展开更多
Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-the...Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-thermal coupling method is proposed.The magnetic-thermal coupling mechanism is analyzed.The thermal network model and finite element model are built by this method,respectively.The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load,and the relationship between the load and temperature field is researched under the condition of the synchronous speed.In addition,the equivalent thermal network model is used to verify the magnetic-thermal coupling method.Then the temperatures of various nodes are obtained.The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method,which can be applied to other permanent magnet motors with complex structures.展开更多
Stress response at the protein level to viral infection in orchid plants has not been extensively investigated to date. To understand the proteomic basis of Phalaenopsis amabilis’s responses to Cymbidium Mosaic virus...Stress response at the protein level to viral infection in orchid plants has not been extensively investigated to date. To understand the proteomic basis of Phalaenopsis amabilis’s responses to Cymbidium Mosaic virus (CymMV), and/or Odontoglossum ring spot virus (ORSV), the total proteins were extracted from Phalaenopsis amabilis leaves infected with CymMV, ORSV, or both respectively. Differentially expressed proteins were identified by two-dimensional electrophoresis, and 27 of these proteins that had significant changes were further examined by mass spectrometry. Comparing CymMV-infected leaves with mock-inoculated ones, 2 proteins were significantly up-regulated, 9 were significantly down-regulated and 1 previously undetected protein was identified. 10 proteins were significantly up-regulated, 3 significantly down-regulated and 1 previously undetected protein was identified in ORSV-infected leaves. 6 proteins were significantly up-regulated and 9 significantly down-regulated proteins were found in co-infected leaves. These identified proteins are involved in disease resistance, stress response, transcriptional regulation, energy metabolism, protein modification and the previously unknown proteins were not involved with known protein pathways. Proteins significantly up-regulated were ATP sulfurylase, down-regulated proteins included glutamate decarboxylase isozyme 2, RNA polymerase alpha subunit and chloroplastic peptide deformylase 1A were proteins with similar alteration trend after all infection treatments. Significantly up-regulated were Thioredoxin H-type and down-regulated Cytosolic phosphoglycerate kinase I which were proteins that have been shown to be specifically regulated by the infection with CymMV. Significantly up-regulated were proteins like Rubisco large subunit, Triosephosphate isomerase, NADP-specific isocitrate dehydrogenase and Cinnamoyl CoA reductase CCR2 by the infection of ORSV. Protein regulation in coinfected leaves followed a pattern similar to that of any of the single virus infection results.展开更多
Odontoglossum ringspot virus (ORSV) infects perennial orchids (Phalaenopsis amabilis) and causes a widespread viral disease. RNA-silencing of viral genes is a promising and effective way of controlling viral infection...Odontoglossum ringspot virus (ORSV) infects perennial orchids (Phalaenopsis amabilis) and causes a widespread viral disease. RNA-silencing of viral genes is a promising and effective way of controlling viral infection in plants. An inverted repeat (IR) fragment of the ORSV coat protein gene, cp, was inserted into the pXGY1 vector to generate the silencing construct, pXGY1-ORSV, which was introduced into Nicotiana benthamiana via Agrobacterium-mediated infiltration. A total of 15 homozygous pXGY1-ORSV transgenic N. benthamiana T1 plants were obtained from five transgenic lines, and ORSV cp gene multiplication was reduced by at least 75% - 95% in 12 T2 plants, demonstrating their increased resistance to ORSV. An infectious ORSV clone, pCAMBIA2300-ORSV, was generated to facilitate rigorous analyses of plant viral resistance. Semi-quantitative RT-PCR (sqRT-PCR) and northern-blot analyses revealed that levels of ORSV multiplication and ORSV coat protein were significantly reduced in pXGY1-ORSV transgenic N. benthamiana. Western-blot from pXGY1-ORSV inoculated leaves of ORSV infected P. amabilis also revealed the significant decrease and even degradation of ORSV-CP protein. Disease symptoms were not observed in transgenic plants. These results indicate a high level of ORSV-resistance in pXGY1-ORSV transgenic N. benthamiana.展开更多
Permanent magnet synchronous motors(PMSMs)are widely used in high-power-density and flexible control methods.Generally,the inductance changes significantly in real-time machine operations because of magnetic saturatio...Permanent magnet synchronous motors(PMSMs)are widely used in high-power-density and flexible control methods.Generally,the inductance changes significantly in real-time machine operations because of magnetic saturation and coupling effects.Therefore,the identification of inductance is crucial for PMSM control.Existing inductance identification methods are primarily based on the voltage source inverter(VSI),making inverter nonlinearity one of the main error sources in inductance identification.To improve the accuracy of inductance identification,it is necessary to compensate for the inverter nonlinearity effect.In this study,an overview of the PMSM inductance identification and the related inverter nonlinearity self-learning methods are presented.展开更多
In this study,a method was presented to accurately obtain the extinction characteristics of the non-spherical biological particle aggregates.Based on the multi-sphere particle model of non-spherical particles,a random...In this study,a method was presented to accurately obtain the extinction characteristics of the non-spherical biological particle aggregates.Based on the multi-sphere particle model of non-spherical particles,a randomly oriented aggregation model was firstly built to construct the aggregates.The discrete-dipole approximation method was used to calculate the extinction characteristics of aggregates in the 3–14 μm waveband.The average mass extinction coefficients of three materials are 0.802 m~2/g,0.907 m~2/g,and 0.866 m~2/g in the 3–5 μm waveband and 0.590 m~2/g,0.402 m~2/g,and 0.523 m~2/g in the8–14 μm band,respectively.Smoke chamber experimental results are in good agreement with theoretical analyses.展开更多
Bioaerosols exhibit significant broadband extinction performance and have vital impacts on climate change,optical detection,communication,disease transmission,and the development of optical attenuation materials.Micro...Bioaerosols exhibit significant broadband extinction performance and have vital impacts on climate change,optical detection,communication,disease transmission,and the development of optical attenuation materials.Microbial spores and microbial hyphae represent two primary forms of bioaerosol particles.However,a comprehensive investigation and comparison of their optical properties have not been conducted yet.In this paper,the spectra of spores and hyphae were tested,and the absorption peaks,component contents,and protein structural differences were compared.Accurate structural models were established,and the optical attenuation parameters were calculated.Aerosol chamber experiments were conducted to verify the optical attenuation performance of microbial spores and hyphae in the mid-infrared and far-infrared spectral bands.Results demonstrate that selecting spores and hyphae can significantly reduce the average transmittance from 21.2%to 6.4%in the mid-infrared band and from 31.3%to 19.6%in the far-infrared band within three minutes.The conclusions have significant implications for the selection of high-performance microbial optical attenuation materials as well as for the rapid detection of bioaerosol types in research on climate change and the spread of pathogenic aerosols.展开更多
The widely tunable and high resolution mid-infrared laser based on a BaGa_(4)Se_(7)(BGSe)optical parametric oscillator(OPO)was demonstrated.A wavelength tuning range of 2.76–4.64μm and a wavelength tuning resolution...The widely tunable and high resolution mid-infrared laser based on a BaGa_(4)Se_(7)(BGSe)optical parametric oscillator(OPO)was demonstrated.A wavelength tuning range of 2.76–4.64μm and a wavelength tuning resolution of about 0.3 nm were obtained by a BGSe(56.3°,0°)OPO,which was pumped by a 1064 nm laser.It is the narrowest reported wavelength tuning resolution for BGSe OPO,and was obtained by simultaneously controlling the angle and temperature of BGSe.展开更多
Spectroscopy is a well-established nonintrusive tool that has played an important role in identifying and quantifying substances,from quantum descriptions to chemical and biomedical diagnostics.Challenges exist in acc...Spectroscopy is a well-established nonintrusive tool that has played an important role in identifying and quantifying substances,from quantum descriptions to chemical and biomedical diagnostics.Challenges exist in accurate spectrum analysis in free space,which hinders us from understanding the composition of multiple gases and the chemical processes in the atmosphere.A photon-counting distributed free-space spectroscopy is proposed and demonstrated using lidar technique,incorporating a comb-referenced frequency-scanning laser and a superconducting nanowire single-photon detector.It is suitable for remote spectrum analysis with a range resolution over a wide band.As an example,a continuous field experiment is carried out over 72 h to obtain the spectra of carbon dioxide(CO_(2))and semi-heavy water(HDO,isotopic water vapor)in 6 km,with a range resolution of 60 m and a time resolution of 10 min.Compared to the methods that obtain only column-integrated spectra over kilometer-scale,the range resolution is improved by 2-3 orders of magnitude in this work.The CO_(2)and HDO concentrations are retrieved from the spectra acquired with uncertainties as low as±1.2%and±14.3%,respectively.This method holds much promise for increasing knowledge of atmospheric environment and chemistry researches,especially in terms of the evolution of complex molecular spectra in open areas.展开更多
The first photon bias of photon detection results in distortion of the photon waveform,which seriously affects the accurate acquisition of target information.A rapid universal recursive correction method is proposed,w...The first photon bias of photon detection results in distortion of the photon waveform,which seriously affects the accurate acquisition of target information.A rapid universal recursive correction method is proposed,which is suitable for multi-trigger and single-trigger modes of photon detection.The calculation time is 2 to 3 orders of magnitude faster than that of Xu et al.'s method.In the experiment,we have obtained good correction results for area targets and targets with varying depths.When the average number of echo photons is 0.89,the correlation distance of the correction waveform is reduced by 85%.展开更多
To fully describe the structure information of the point cloud when the LIDAR-object distance is long,a joint global and local feature(JGLF)descriptor is constructed.Compared with five typical descriptors,the object r...To fully describe the structure information of the point cloud when the LIDAR-object distance is long,a joint global and local feature(JGLF)descriptor is constructed.Compared with five typical descriptors,the object recognition rate of JGLF is higher when the LIDAR-object distances change.Under the situation that airborne LIDAR is getting close to the object,the particle filtering(PF)algorithm is used as the tracking frame.Particle weight is updated by comparing the difference between JGLFs to track the object.It is verified that the proposed algorithm performs 13.95%more accurately and stably than the basic PF algorithm.展开更多
The surface-mounted and interior permanent magnet synchronous motor(SIPMSM)has the characteristics of multiple variables,strong coupling and nonlinearity.In order to improve the performance of SIPMSM,this paper presen...The surface-mounted and interior permanent magnet synchronous motor(SIPMSM)has the characteristics of multiple variables,strong coupling and nonlinearity.In order to improve the performance of SIPMSM,this paper presents a multi-objective optimal design process using Taguchi and response surface methodology(RSM).The peak value of cogging torque(PVCT),ratio value of average torque and permanent magnet weight(RTW),torque ripple and back-EMF total harmonics distortion(ETHD)are selected as optimization goals.The experiment matrix is established by Taguchi method,and analyzed the tendency and proportion of the effect of the optimization parameters on SIPMSM performance.The rules of choosing multi-objective optimization parameters are obtained.The least-squares method is used to establish the optimal objective function,and RSM is used to obtain the resolutions of the optimization objective function.Comparing the initial performance with optimized performance verifies the effectiveness of the proposed method.展开更多
Bioaerosol, an important constituent of the atmosphere, can directly affect light radiation characteristics due to absorption and scattering effects. Current research lacks a reasonable explanation for the extinction ...Bioaerosol, an important constituent of the atmosphere, can directly affect light radiation characteristics due to absorption and scattering effects. Current research lacks a reasonable explanation for the extinction abilities of bioaerosols in a broadband. Herein, we measured the reflectance spectra of 12 com m on biomaterials and calculated their complex refractive indexes. The peaks of the imaginary part of the complex refractive indexes are located at wavelengths of approximately 0.7, 2.7, 6.1 and 9.5μm. Based on photographs of the floating structures of bioaerosols, we constructed a model for calculating the extinction abilities of bioaerosols in the wavelength range of 240 nm to 14 (im. Taking AN02 spores as an example, absorption was found to account for more than 90% of the total extinction. In addition, the theoretical calculations and experimental data of transmittance corresponding to the smoke box show that bioaerosol exhibits significant broadband extinction ability from UV to IR bands, which provides new directions for the development of broadband light attenuation materials.展开更多
In recent decades,worldwide global warming and reduction in petroleum resources have accelerated researcher’s attention to produce alternative sustainable and environmentally clean transportation systems.Electrificat...In recent decades,worldwide global warming and reduction in petroleum resources have accelerated researcher’s attention to produce alternative sustainable and environmentally clean transportation systems.Electrification of vehicular technology is capable of curbing the environmental pollution problem in an efficient and effective way,due to high efficiency electric motors,development and advancement in the field of power electronic devices,digital signal processing and advanced control techniques.This article presents a comprehensive review on different configurations/architecture of electric vehicles(EVs)and hybrid electric vehicles(HEVs),traction motors for electric propulsion system and high performance speed sensorless control of traction drive.The basic architecture key components of hybrid vehicle and different power train configurations with respect to applications and limitations are discussed.The integral part of electric propulsion system,traction motor classes for desired operational characteristics and limitations are summarized from a system perspective with the latest improvements.High performance traction motor control techniques are discussed with respect to automotive applications.Finally,speed sensorless control techniques research trends as well as an extensive review on rotor speed estimation techniques for robust and efficient sensorless traction drive control are highlighted.This article provides state of the art key global trends and tradeoff of various technologies with future trends and potential areas of research.展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 52025073 and 52107047in part by China Scholarship Council。
文摘In recent years,motor drive systems have garnered increasing attention due to their high efficiency and superior control performance.This is especially apparent in aerospace,marine propulsion,and electric vehicles,where high performance,efficiency,and reliability are crucial.The ability of the drive system to maintain long-term fault-tolerant control(FTC)operation after a failure is essential.The likelihood of inverter failures surpasses that of other components in the drive system,highlighting its critical importance.Long-term FTC operation ensures the system retains its fundamental functions until safe repairs or replacements can be made.The focus of developing a FTC strategy has shifted from basic FTC operations to enhancing the post-fault quality to accommodate the realities of prolonged operation post-failure.This paper primarily investigates FTC strategies for inverter failures in various motor drive systems over the past decade.These strategies are categorized into three types based on post-fault operational quality:rescue,remedy,and reestablishment.The paper discusses each typical control strategy and its research focus,the strengths and weaknesses of various algorithms,and recent advancements in FTC.Finally,this review summarizes effective FTC techniques for inverter failures in motor drive systems and suggests directions for future research.
文摘THE rapid growth of new energy vehicles is accelerating the low-carbon transition in the global transportation sector. According to the international energy agency report, more than 10 million electric vehicles(EVs) including pure electric and hybrid models were sold worldwide in 2022, which means that the global share of electric vehicles in the overall automotive market has risen from less than 5% in 2020 to 14% in 2022.
基金supported by the National Natural Science Foundation of China(Grant Nos.61271353 and 60908033)the Natural Science Foundation of Anhui Province,China(Grant No.1408085MKL47)
文摘At present, research into optical properties of bio-smoke materials mostly concentrates on single band or single germplasm. Herein, we measured the spectral reflectance of three eukaryotic bio-smoke materials and three prokaryotic bio-smoke materials in the waveband from 0.25 μm to 14μm. Based on the Kramers-Kroning algorithm, the complex refractive index m(λ) was calculated and the Fourier-transform infrared(FTIR) spectra of materials were analyzed. The results show that n(λ) of bio-smoke materials varies between 1.1-2, and n(λ) values in the visible light to near-infrared wavebands are significantly larger than those in other wavebands. The k(λ) of bio-smoke materials varies between 0-0.4.At 6-6.5 μm, k(λ) of prokaryotic materials is 3 times that of eukaryotic materials, which is caused by C=O stretching vibration of amide I and C-N stretching vibration of amide Ⅱ in proteins. At 2.5-3 μm and 9.75 μm, k(λ) values of eukaryotic bio-smoke materials are nearly 2 times that of prokaryotic ones. The absorption peak at 2.5-3 μm is mainly triggered by C-H stretching vibration in lipid and O-H stretching vibration in bound water. The absorption peak at 9.75 μm is mainly caused by symmetric stretching vibration of PO2-in nucleic acids.
文摘Power&signal multiplex transmission(P&SMT)is a technique that uses power electronic circuits for communication signal transmission.In this paper,a three-phase cascaded multilevel inverter-based P&S MT system is proposed.The proposed method can transmit communication signals without using a Controller Area Network bus,thereby reducing the wiring cost of the conventional electric vehicle(EV)communication system.The designed system can achieve motor speed regulation and battery balance discharging for EVs.With the combined pulse width modulation scheme and frequency shift keying method,both power and communication signals are transmitted successfully in a simulation model implemented in Matlab/Simulink.By evaluating the bit error rate of the transmitted signal,the maximum signal rate of the proposed system is determined as 600 bit/s.
基金the National Natural Science Foundation of China under Grant 52007071 and 51907073the China Postdoctoral Science Foundation under Grant 3004131154 and 2020M672355the Applied Basic Frontier Program of Wuhan under Grant 2020010601012207。
文摘To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS.
基金supported by the National Natural Science Foundation of China under Grants (61405039) and (61475037)Science and Technology Planning Projects of Guangdong Province,China under Grant (2016A 020223013)+4 种基金the Natural Science Foundation of Guangdong Province,China,under Grant (2014A030310300)the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China,under Grant (2014KQNCX066)Research Fund for the Doctoral Program of Higher Education of China under Grant (20134407 110008)Guangzhou Science and Technology Project of Guangdong Province,China under Grant (2016201604030027)the Research Fund of Guangdong University of Technology under Grant (16ZK0041 ,13ZK0387)
文摘A plasmonic filter and sensor is designed based on an end-coupled ring-groove composited resonator(RGCR).According to the magnetic field distributions of the resonance modes,a horizontal or vertical groove is added to the perfect ring resonator,and the transmission peaks for the 1st and the 2nd modes can be linearly changed by the length of the groove.In this case,the proposed structure can act as an on-chip optical filter with flexible wavelength manipulation.When the groove is rotated with an angle of?/4,Fano resonance arises due to the mode interference.Dual asymmetric sharp transmission peaks are achieved around the wavelength of the former 2nd resonance mode.High figure of merit and high sensitivity are obtained for the structure,and it is believed that the device can find widely applications in the biochemistry sensing area.The corresponding spectra and the propagation characteristics are numerically investigated by using the finite-difference time-domain method.
基金This work was supported by Natural Science Foundation of China(Item number:51777060,U1361109)Natural Science Foundation of Henan province(Item number:162300410117)the he innovative research team plan of Henan Polytechnic University(Item number:T2015-2).
文摘Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-thermal coupling method is proposed.The magnetic-thermal coupling mechanism is analyzed.The thermal network model and finite element model are built by this method,respectively.The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load,and the relationship between the load and temperature field is researched under the condition of the synchronous speed.In addition,the equivalent thermal network model is used to verify the magnetic-thermal coupling method.Then the temperatures of various nodes are obtained.The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method,which can be applied to other permanent magnet motors with complex structures.
文摘Stress response at the protein level to viral infection in orchid plants has not been extensively investigated to date. To understand the proteomic basis of Phalaenopsis amabilis’s responses to Cymbidium Mosaic virus (CymMV), and/or Odontoglossum ring spot virus (ORSV), the total proteins were extracted from Phalaenopsis amabilis leaves infected with CymMV, ORSV, or both respectively. Differentially expressed proteins were identified by two-dimensional electrophoresis, and 27 of these proteins that had significant changes were further examined by mass spectrometry. Comparing CymMV-infected leaves with mock-inoculated ones, 2 proteins were significantly up-regulated, 9 were significantly down-regulated and 1 previously undetected protein was identified. 10 proteins were significantly up-regulated, 3 significantly down-regulated and 1 previously undetected protein was identified in ORSV-infected leaves. 6 proteins were significantly up-regulated and 9 significantly down-regulated proteins were found in co-infected leaves. These identified proteins are involved in disease resistance, stress response, transcriptional regulation, energy metabolism, protein modification and the previously unknown proteins were not involved with known protein pathways. Proteins significantly up-regulated were ATP sulfurylase, down-regulated proteins included glutamate decarboxylase isozyme 2, RNA polymerase alpha subunit and chloroplastic peptide deformylase 1A were proteins with similar alteration trend after all infection treatments. Significantly up-regulated were Thioredoxin H-type and down-regulated Cytosolic phosphoglycerate kinase I which were proteins that have been shown to be specifically regulated by the infection with CymMV. Significantly up-regulated were proteins like Rubisco large subunit, Triosephosphate isomerase, NADP-specific isocitrate dehydrogenase and Cinnamoyl CoA reductase CCR2 by the infection of ORSV. Protein regulation in coinfected leaves followed a pattern similar to that of any of the single virus infection results.
文摘Odontoglossum ringspot virus (ORSV) infects perennial orchids (Phalaenopsis amabilis) and causes a widespread viral disease. RNA-silencing of viral genes is a promising and effective way of controlling viral infection in plants. An inverted repeat (IR) fragment of the ORSV coat protein gene, cp, was inserted into the pXGY1 vector to generate the silencing construct, pXGY1-ORSV, which was introduced into Nicotiana benthamiana via Agrobacterium-mediated infiltration. A total of 15 homozygous pXGY1-ORSV transgenic N. benthamiana T1 plants were obtained from five transgenic lines, and ORSV cp gene multiplication was reduced by at least 75% - 95% in 12 T2 plants, demonstrating their increased resistance to ORSV. An infectious ORSV clone, pCAMBIA2300-ORSV, was generated to facilitate rigorous analyses of plant viral resistance. Semi-quantitative RT-PCR (sqRT-PCR) and northern-blot analyses revealed that levels of ORSV multiplication and ORSV coat protein were significantly reduced in pXGY1-ORSV transgenic N. benthamiana. Western-blot from pXGY1-ORSV inoculated leaves of ORSV infected P. amabilis also revealed the significant decrease and even degradation of ORSV-CP protein. Disease symptoms were not observed in transgenic plants. These results indicate a high level of ORSV-resistance in pXGY1-ORSV transgenic N. benthamiana.
基金National Natural Science Foundation of China(52307048)the Postdoctoral General Foundation of Heilongjiang(LBH-Z23022).
文摘Permanent magnet synchronous motors(PMSMs)are widely used in high-power-density and flexible control methods.Generally,the inductance changes significantly in real-time machine operations because of magnetic saturation and coupling effects.Therefore,the identification of inductance is crucial for PMSM control.Existing inductance identification methods are primarily based on the voltage source inverter(VSI),making inverter nonlinearity one of the main error sources in inductance identification.To improve the accuracy of inductance identification,it is necessary to compensate for the inverter nonlinearity effect.In this study,an overview of the PMSM inductance identification and the related inverter nonlinearity self-learning methods are presented.
基金supported by the National Natural Science Foundation of China (No.62075241)the Advanced Laser Technology Laboratory Foundation of Anhui Province of China (No.20191003)。
文摘In this study,a method was presented to accurately obtain the extinction characteristics of the non-spherical biological particle aggregates.Based on the multi-sphere particle model of non-spherical particles,a randomly oriented aggregation model was firstly built to construct the aggregates.The discrete-dipole approximation method was used to calculate the extinction characteristics of aggregates in the 3–14 μm waveband.The average mass extinction coefficients of three materials are 0.802 m~2/g,0.907 m~2/g,and 0.866 m~2/g in the 3–5 μm waveband and 0.590 m~2/g,0.402 m~2/g,and 0.523 m~2/g in the8–14 μm band,respectively.Smoke chamber experimental results are in good agreement with theoretical analyses.
文摘Bioaerosols exhibit significant broadband extinction performance and have vital impacts on climate change,optical detection,communication,disease transmission,and the development of optical attenuation materials.Microbial spores and microbial hyphae represent two primary forms of bioaerosol particles.However,a comprehensive investigation and comparison of their optical properties have not been conducted yet.In this paper,the spectra of spores and hyphae were tested,and the absorption peaks,component contents,and protein structural differences were compared.Accurate structural models were established,and the optical attenuation parameters were calculated.Aerosol chamber experiments were conducted to verify the optical attenuation performance of microbial spores and hyphae in the mid-infrared and far-infrared spectral bands.Results demonstrate that selecting spores and hyphae can significantly reduce the average transmittance from 21.2%to 6.4%in the mid-infrared band and from 31.3%to 19.6%in the far-infrared band within three minutes.The conclusions have significant implications for the selection of high-performance microbial optical attenuation materials as well as for the rapid detection of bioaerosol types in research on climate change and the spread of pathogenic aerosols.
基金the Director Foundation of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2022ZR03)the Independent Innovation Science Foundation of National University of Defense Technolo-gy(23-ZZCX-JDZ-44)+1 种基金the Young Doctoral Fund of the College of Electronic Engineering,NUDT(No.KY22C211)the Technology Domain Fund of 173 Project(Nos.2021-JCJQ-JJ-0284,and 2022-JCJQ-JJ-0237).
文摘The widely tunable and high resolution mid-infrared laser based on a BaGa_(4)Se_(7)(BGSe)optical parametric oscillator(OPO)was demonstrated.A wavelength tuning range of 2.76–4.64μm and a wavelength tuning resolution of about 0.3 nm were obtained by a BGSe(56.3°,0°)OPO,which was pumped by a 1064 nm laser.It is the narrowest reported wavelength tuning resolution for BGSe OPO,and was obtained by simultaneously controlling the angle and temperature of BGSe.
基金This work was supported by The National Ten Thousand Talent Program in China.We are grateful to Nanjing Taixin Co.,Ltd.for financial support(91320191MA26A48Q5X).
文摘Spectroscopy is a well-established nonintrusive tool that has played an important role in identifying and quantifying substances,from quantum descriptions to chemical and biomedical diagnostics.Challenges exist in accurate spectrum analysis in free space,which hinders us from understanding the composition of multiple gases and the chemical processes in the atmosphere.A photon-counting distributed free-space spectroscopy is proposed and demonstrated using lidar technique,incorporating a comb-referenced frequency-scanning laser and a superconducting nanowire single-photon detector.It is suitable for remote spectrum analysis with a range resolution over a wide band.As an example,a continuous field experiment is carried out over 72 h to obtain the spectra of carbon dioxide(CO_(2))and semi-heavy water(HDO,isotopic water vapor)in 6 km,with a range resolution of 60 m and a time resolution of 10 min.Compared to the methods that obtain only column-integrated spectra over kilometer-scale,the range resolution is improved by 2-3 orders of magnitude in this work.The CO_(2)and HDO concentrations are retrieved from the spectra acquired with uncertainties as low as±1.2%and±14.3%,respectively.This method holds much promise for increasing knowledge of atmospheric environment and chemistry researches,especially in terms of the evolution of complex molecular spectra in open areas.
基金the National Natural Science Foundation of China(No.61871389)the Research Plan Project of the National University ofDefense Technology(No.ZK 18-01-02)。
文摘The first photon bias of photon detection results in distortion of the photon waveform,which seriously affects the accurate acquisition of target information.A rapid universal recursive correction method is proposed,which is suitable for multi-trigger and single-trigger modes of photon detection.The calculation time is 2 to 3 orders of magnitude faster than that of Xu et al.'s method.In the experiment,we have obtained good correction results for area targets and targets with varying depths.When the average number of echo photons is 0.89,the correlation distance of the correction waveform is reduced by 85%.
基金This work was supported by the National Natural Science Foundation of China(Nos.61271353 and 61871389)Foundation of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2018ZR09)Major Funding Projects of National University of Defense Technology(No.ZK18-01-02).
文摘To fully describe the structure information of the point cloud when the LIDAR-object distance is long,a joint global and local feature(JGLF)descriptor is constructed.Compared with five typical descriptors,the object recognition rate of JGLF is higher when the LIDAR-object distances change.Under the situation that airborne LIDAR is getting close to the object,the particle filtering(PF)algorithm is used as the tracking frame.Particle weight is updated by comparing the difference between JGLFs to track the object.It is verified that the proposed algorithm performs 13.95%more accurately and stably than the basic PF algorithm.
基金Supported by National Natural Science Foundation of China(U1361109,51777060)Natural Science Foundation of Henan province(162300410117).
文摘The surface-mounted and interior permanent magnet synchronous motor(SIPMSM)has the characteristics of multiple variables,strong coupling and nonlinearity.In order to improve the performance of SIPMSM,this paper presents a multi-objective optimal design process using Taguchi and response surface methodology(RSM).The peak value of cogging torque(PVCT),ratio value of average torque and permanent magnet weight(RTW),torque ripple and back-EMF total harmonics distortion(ETHD)are selected as optimization goals.The experiment matrix is established by Taguchi method,and analyzed the tendency and proportion of the effect of the optimization parameters on SIPMSM performance.The rules of choosing multi-objective optimization parameters are obtained.The least-squares method is used to establish the optimal objective function,and RSM is used to obtain the resolutions of the optimization objective function.Comparing the initial performance with optimized performance verifies the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (61271353 and 60908033)the Natural Science Foundation of Anhui Province (1408085MKL47)
文摘Bioaerosol, an important constituent of the atmosphere, can directly affect light radiation characteristics due to absorption and scattering effects. Current research lacks a reasonable explanation for the extinction abilities of bioaerosols in a broadband. Herein, we measured the reflectance spectra of 12 com m on biomaterials and calculated their complex refractive indexes. The peaks of the imaginary part of the complex refractive indexes are located at wavelengths of approximately 0.7, 2.7, 6.1 and 9.5μm. Based on photographs of the floating structures of bioaerosols, we constructed a model for calculating the extinction abilities of bioaerosols in the wavelength range of 240 nm to 14 (im. Taking AN02 spores as an example, absorption was found to account for more than 90% of the total extinction. In addition, the theoretical calculations and experimental data of transmittance corresponding to the smoke box show that bioaerosol exhibits significant broadband extinction ability from UV to IR bands, which provides new directions for the development of broadband light attenuation materials.
文摘In recent decades,worldwide global warming and reduction in petroleum resources have accelerated researcher’s attention to produce alternative sustainable and environmentally clean transportation systems.Electrification of vehicular technology is capable of curbing the environmental pollution problem in an efficient and effective way,due to high efficiency electric motors,development and advancement in the field of power electronic devices,digital signal processing and advanced control techniques.This article presents a comprehensive review on different configurations/architecture of electric vehicles(EVs)and hybrid electric vehicles(HEVs),traction motors for electric propulsion system and high performance speed sensorless control of traction drive.The basic architecture key components of hybrid vehicle and different power train configurations with respect to applications and limitations are discussed.The integral part of electric propulsion system,traction motor classes for desired operational characteristics and limitations are summarized from a system perspective with the latest improvements.High performance traction motor control techniques are discussed with respect to automotive applications.Finally,speed sensorless control techniques research trends as well as an extensive review on rotor speed estimation techniques for robust and efficient sensorless traction drive control are highlighted.This article provides state of the art key global trends and tradeoff of various technologies with future trends and potential areas of research.