The Oriental Stork(Ciconia boyciana)is listed as'Endangered'on the International Union for the Conservation of Nature(IUCN)Red List of Threatened Species and is classified as a first category nationally protec...The Oriental Stork(Ciconia boyciana)is listed as'Endangered'on the International Union for the Conservation of Nature(IUCN)Red List of Threatened Species and is classified as a first category nationally protected bird species in China.Understanding this species'seasonal movements and migration will facilitate effective conservation to promote its population.We tagged 27 Oriental Stork nestlings at Xingkai Lake on the Sanjiang Plain in Heilongjiang Province,China,used GPS tracking to follow them over the periods of 2014-2017 and 2019-2022,and confirmed their detailed migratory routes using the spatial analysis function of ArcGIS 10.7.We discovered four migration routes during autumn migration:one common long-distance migration route in which the storks migrated along the coastline of Bohai Bay to the middle and lower reaches of the Yangtze River for wintering,one short-distance migration route in which the storks wintered in Bohai Bay and two other migration routes in which the storks crossed the Bohai Strait around the Yellow River and wintered in South Korea.There were no significant differences in the number of migration days,residence days,migration distances,number of stopovers and average number of days spent at stopover sites between the autumn and spring migrations(P>0.05).However,the storks migrated significantly faster in spring than in autumn(P=0.03).The same individuals did not exhibit a high degree of repetition in their migration timing and route selection in either autumn or spring migration.Even storks from the same nest exhibited considerable between-individual variation in their migration routes.Some important stopover sites were identified,especially in the Bohai Rim Region and on the Songnen Plain,and we further explored the current conservation status at these two important sites.Overall,our results contribute to the understanding of the annual migration,dispersal and protection status of the endangered Oriental Stork and provide a scientific basis for conservation decisions and the development of action plans for this species.展开更多
For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inv...For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inverse problem,for which the models(e.g.,response matrix)are often ill-posed,resulting in degraded accuracy and impaired noise immunity of load identification.This study aims at identifying external loads in a stiffened plate structure,through comparing the effectiveness of different methods for parameter selection in regulation problems,including the Generalized Cross Validation(GCV)method,the Ordinary Cross Validation method and the truncated singular value decomposition method.With demonstrated high accuracy,the GCV method is used to identify concentrated loads in three different directions(e.g.,vertical,lateral and longitudinal)exerted on a stiffened plate.The results show that the GCV method is able to effectively identify multi-source static loads,with relative errors less than 5%.Moreover,under the situation of swept frequency excitation,when the excitation frequency is near the natural frequency of the structure,the GCV method can achieve much higher accuracy compared with direct inversion.At other excitation frequencies,the average recognition error of the GCV method load identification less than 10%.展开更多
The CryoEM single particle structure determination method has recently received broad attention in the field of structural biology. The structures can be resolved to near-atomic resolutions after model reconstructions...The CryoEM single particle structure determination method has recently received broad attention in the field of structural biology. The structures can be resolved to near-atomic resolutions after model reconstructions from a large number of CryoEM images measuring molecules in different orientations. However, the determining factors for reconstructed map resolution need to be further explored. Here, we provide a theoretical framework in conjunction with numerical simulations to gauge the influence of several key factors to CryoEM map resolutions. If the projection image quality allows orientation assignment, then the number of measured projection images and the quality of each measurement(quantified using average signal-to-noise ratio) can be combined to a single factor, which is dominant to the resolution of reconstructed maps. Furthermore, the intrinsic thermal motion of molecules has significant effects on the resolution. These effects can be quantitatively summarized with an analytical formula that provides a theoretical guideline on structure resolutions for given experimental measurements.展开更多
The relationship between charge-density-wave(CDW) and superconductivity(SC), two vital physical phases in condensed matter physics, has always been the focus of scientists’ research over the past decades. Motivated b...The relationship between charge-density-wave(CDW) and superconductivity(SC), two vital physical phases in condensed matter physics, has always been the focus of scientists’ research over the past decades. Motivated by this research hotspot, we systematically studied the physical properties of the layered telluride chalcogenide superconductors CuIr_(2-x)Al_(x)Te_(4)(0 ≤x≤ 0.2). Through the resistance and magnetization measurements, we found that the CDW order was destroyed by a small amount of Al doping. Meanwhile, the superconducting transition temperature(T_(c)) kept changing with the change of doping amount and rose towards the maximum value of 2.75 K when x = 0.075. The value of normalized specific heat jump(△C/γT_(c)) for the highest T_(c) sample CuIr_(2-x)Al_(x)Te_(4)was 1.53, which was larger than the BCS value of 1.43 and showed the bulk superconducting nature. In order to clearly show the relationship between SC and CDW states,we propose a phase diagram of T_(c) vs. doping content.展开更多
The factors that determine fibrosis progression or normal tissue repair are largely unknown.We previously demonstrated that autophagy inhibition-mediated epithelial-mesenchymal transition(EMT)in human alveolar epithel...The factors that determine fibrosis progression or normal tissue repair are largely unknown.We previously demonstrated that autophagy inhibition-mediated epithelial-mesenchymal transition(EMT)in human alveolar epithelial type Il(ATIl)cells augments local myofibroblast differentiation in pulmonary fibrosis by paracrine signaling.Here,we report that liver kinase B1(LKB1)inactivation in ATIl cells inhibits autophagy and induces EMT as a conse-quence.In IPF lungs,this is caused by the down-regulation of CAB39L,a key subunit within the LKB1 complex.3D co-cultures of ATIl cells and MRC5 lung fibroblasts coupled with RNA sequencing(RNA-seq)confirmed that paracrine signaling between LKB1-depleted ATIl cells and fibroblasts augmented myofibroblast differentiation.Together,these data suggest that reduced autophagy caused by LKB1 inhibition can induce EMT in ATIl cells and contribute to fibrosis via aberrant epithelial-fibroblast crosstalk.展开更多
Superconducting quantum interference devices(SQUIDs)are directly sensitive to magnetic flux.Nano-fabricated SQUID chip with miniaturized superconducting circuits can be further utilized as scanning probes for imaging ...Superconducting quantum interference devices(SQUIDs)are directly sensitive to magnetic flux.Nano-fabricated SQUID chip with miniaturized superconducting circuits can be further utilized as scanning probes for imaging of materials.Scanning SQUID microscopy(SSM)combines both high spatial resolution and high magnetic field sensitivity and is especially suitable for studying low dimensional materials with small sensing volumes.Here,we briefly review the fabrication of different types of nano-SQUIDs and the recent progress of utilizing them for scanning microscopy of quantum materials.We focus on but are not limited to topological states,unconventional superconductivity and exotic magnetism with a particular interest in two-dimensional materials.The magnet-ometry,susceptometry and current imaging modes of the SSM coupled with the external tuning of the material by magnetic field,electrical field gating and strain reveals a multitude of information beyond the scopes of charge-sensing probes.展开更多
Progressive lung fibrosis is characterized by dysregulated extracellular matrix(ECM)homeostasis.Understand-ing of disease pathogenesis remains limited and has prevented the development of effective treatments.While an...Progressive lung fibrosis is characterized by dysregulated extracellular matrix(ECM)homeostasis.Understand-ing of disease pathogenesis remains limited and has prevented the development of effective treatments.While an abnormal wound-healing response is strongly implicated in lung fibrosis initiation,factors that determine why fi-brosis progresses rather than regular tissue repair occur are not fully explained.Within human lung fibrosis,there is evidence of altered epithelial and mesenchymal populations as well as cells undergoing epithelial-mesenchymal transition(EMT),a dynamic and reversible biological process by which epithelial cells lose their cell polarity and down-regulate cadherin-mediated cell-cell adhesion to gain migratory properties.This review will focus on the role of EMT and dysregulated epithelial-mesenchymal crosstalk in progressive lung fibrosis.展开更多
Most of the reported P-type pentatricopeptide repeat(PPR) proteins play roles in organelle RNA stabilization and splicing. However, P-type PPRs involved in both RNA splicing and editing have rarely been reported, and ...Most of the reported P-type pentatricopeptide repeat(PPR) proteins play roles in organelle RNA stabilization and splicing. However, P-type PPRs involved in both RNA splicing and editing have rarely been reported, and their underlying mechanism remains largely unknown. Here, we report a rice floury endosperm22(flo22) mutant with delayed amyloplast development in endosperm cells. Map-based cloning and complementation tests demonstrated that FLO22 encodes a mitochondrion-localized P-type PPR protein.Mutation of FLO22 resulting in defective transsplicing of mitochondrial nad1 intron 1 and perhaps causing instability of mature transcripts affected assembly and activity of complex Ⅰ, and mitochondrial morphology and function. RNA-seq analysis showed that expression levels of many genes involved in starch and sucrose metabolism were significantly down-regulated in the flo22mutant compared with the wild type, whereas genes related to oxidative phosphorylation and the tricarboxylic acid cycle were significantly upregulated. In addition to involvement in splicing as a P-type PPR protein, we found that FLO22 interacted with DYW3, a DYW-type PPR protein, and they may function synergistically in mitochondrial RNA editing. The present work indicated that FLO22 plays an important role in endosperm development and plant growth by participating in nad1 maturation and multi-site editing of mitochondrial messager RNA.展开更多
Plastid-to-nucleus retrograde signaling coordinates nuclear gene expression with chloroplast developmental status and is essential for the photoautotrophic lifestyle of plants.Previous studies have established that te...Plastid-to-nucleus retrograde signaling coordinates nuclear gene expression with chloroplast developmental status and is essential for the photoautotrophic lifestyle of plants.Previous studies have established that tetrapyrrole biosynthesis(TPB)and plastid gene expression(PGE)play essential roles in plastid retrograde signaling during early chloroplast biogenesis;however,their functional relationship remains unknown.In this study,we generated a series of rice TPB-related gun(genome uncoupled)mutants and systematically analyzed their effects on nuclear and plastid gene expression under normal conditions or when subjected to treatments with norflurazon(NF;a noncompetitive inhibitor of carotenoid biosynthesis)and/or lincomycin(Lin;a specific inhibitor of plastid translation).We show that under NF treatment,expression of plastid-encoded polymerase(PEP)-transcribed genes is significantly reduced in the wild type but is derepressed in the TPB-related gun mutants.We further demonstrate that the derepressed expression of PEPtranscribed genes may be caused by increased expression of the PEP core subunit and nuclear-encoded sigma factors and by elevated copy numbers of plastid genome per haploid genome.In addition,we show that expression of photosynthesis-associated nuclear genes(PhANGs)and PEP-transcribed genes is correlated in the rice TPB-related gun mutants,with or without NF or Lin treatment.A similar correlation between PhANGs and PGE is also observed in the Arabidopsis gun4 and gun5 mutants.Moreover,we show that increased expression of PEP-transcribed plastid genes is necessary for the gun phenotype in NF-treated TPB-related gun mutants.Further,we provide evidence that these TPB-related GUN genes act upstream of GUN1 in the regulation of retrograde signaling.Taken together,our results suggest that the TPB-related GUN genes control retrograde plastid signaling by regulating the PGE-dependent retrograde signaling pathway.展开更多
Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene and has a role in inhibiting the oncogenic AKT signaling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3 ) into phosphatidyli...Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene and has a role in inhibiting the oncogenic AKT signaling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3 ) into phosphatidylinositol 4,5-bisphosphate (PIP2 ). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumor phenotype and tumorigenesis. Identifying targeted therapies for inactive tumor suppressor genes such as PTEN has been challenging as it is difficult to restore the tumor suppressor functions. Therefore, focusing on the downstream signaling pathways to discover a targeted therapy for inactive tumor suppressor genes has highlighted the importance of synthetic lethality studies. This review focused on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.展开更多
With the aid of different types of mechanoreceptors,human is capable of perceiving stimuli from surrounding environments and manipulating various objects dexterously.In this paper,a bio-inspired tactile fingertip is d...With the aid of different types of mechanoreceptors,human is capable of perceiving stimuli from surrounding environments and manipulating various objects dexterously.In this paper,a bio-inspired tactile fingertip is designed mimicking human fingertip in both structures and functionalities.Two pairs of strain gages and(Polyvinylidene Fluoride)PVDF films are perpendicularly arranged to simulate the Fast-Adapting(FA)and Slowly Adapting(SA)type mechanoreceptors in human hands,while silicones,Polymethyl Methacrylate(PMMA),and electronic wires are applied to mimic the skin,bone and nerve fibers.Both static and dynamic forces can be perceived sensitively.A preprocessing electric circuit is further designed to transform the resistor changes into voltages,and then filter and amplify the four-channel signals.In addition to strong robustness due to the embedded structure,the developed fingertip is found sensitive to deformations via a force test experiment.Finally,two robotic experiments explore its recognition ability of contact status and object surface.Excellent performance is found with high accuracy of 99.72%achieved in discriminating six surfaces that are ubiquitous in daily life,which demonstrates the effectiveness of our designed tactile sensor.展开更多
Idiopathic pulmonary fibrosis (IPF) is a dreadful, chronic, and irreversibly progressive disease leading to death with a few effective treatments. Our previous study suggested that repetitive hyperbaric oxygen (HBO) t...Idiopathic pulmonary fibrosis (IPF) is a dreadful, chronic, and irreversibly progressive disease leading to death with a few effective treatments. Our previous study suggested that repetitive hyperbaric oxygen (HBO) treatment alleviates bleomycin-induced pulmonary fibrosis in mice. Here, we investigated the protective mechanism of HBO treatment against pulmonary fibrosis using an integrated approach. Analyzing publicly available expression data from the mouse model of bleomycin-induced pulmonary fibrosis as well as IPF patients, several potential mechanisms of relevance to IPF pathology were identified, including increased epithelial-to-mesenchymal transition (EMT) and glycolysis. High EMT or glycolysis scores in bronchoalveolar lavage were strong independent predictors of mortality in multivariate analysis. These processes were potentially driven by hypoxia and blocked by HBO treatment. Together, these data support HBO treatment as a viable strategy against pulmonary fibrosis.展开更多
Despite recent advances in immunotherapy and targeted therapy,the mortality rate seen in lung cancer(LC)is the highest of all cancer forms.The recent topical coronavirus disease 19(COVID-19)and its subsequent pandemic...Despite recent advances in immunotherapy and targeted therapy,the mortality rate seen in lung cancer(LC)is the highest of all cancer forms.The recent topical coronavirus disease 19(COVID-19)and its subsequent pandemic have resulted in over 505 million confirmed cases and approxi-mately 6.2 million fatalities as of April 2022,1 with a stag-gering 30%e50%mortality rate seen in LC patients with COVID-19.2 Cancer patients,in particular,are highly vulnerable to COVID-19 infection due to immunosuppression.展开更多
Traits such as grain shape, panicle length and seed shattering, play important roles in grain yield and harvest. In this study, the cloning and functional analysis of PANICLE TRAITS 2 (PT2), a novel gene from the In...Traits such as grain shape, panicle length and seed shattering, play important roles in grain yield and harvest. In this study, the cloning and functional analysis of PANICLE TRAITS 2 (PT2), a novel gene from the Indica rice Chuandali (CDL), is reported. PT2 is synonymous with Growth-Regulating Factor 4 (OsGRF4), which encodes a growth-regulating factor that positively regulates grain shape and panicle length and negatively regulates seed shattering. Higher expression of OsGRF4 is correlated with larger grain, longer panicle and lower seed shattering. A unique OsGRF4 mutation, which occurs at the OsmiRNA396 target site of OsGRF4, seems to be associated with high levels of OsGRF4 expression, and results in phenotypic difference. Further research showed that OsGRF4 regulated two cytokinin dehydrogenase precursor genes (CKX5 and CKX1) resulting in increased cytokinin levels, which might affect the panicle traits. High storage capacity and moderate seed shattering of OsGRF4 may be useful in high-yield breeding and mechanized harvesting of rice. Our findings provide additional insight into the molecular basis of panicle growth.展开更多
In the rice endosperm cells, glutelins are synthesized on rough endoplasmic reticulum as proglutelins and are sorted to the protein storage vacuoles (PSVs) called protein body IIs (PBIIs), where they are converted...In the rice endosperm cells, glutelins are synthesized on rough endoplasmic reticulum as proglutelins and are sorted to the protein storage vacuoles (PSVs) called protein body IIs (PBIIs), where they are converted to the mature forms. Dense vesicle (DV)-mediated trafficking of proglutelins in rice seeds has been proposed, but the post-Golgi control of this process is largely unknown. Whether DV can fuse directly with PSV is another matter of debate. In this study, we propose a regulatory mechanism underlying DV-mediated, post-Golgi proglutelin trafficking to PBII (PSV). gpa2, a loss- of-function mutant of OsVPS9A, which encodes a GEF of OsRAB5A, accumulated uncleaved proglutelins. Proglutelins were mis-targeted to the paramural bodies and to the apoplast along the cell wall in the form of DVs, which led to a con- comitant reduction in PBII size. Previously reported gpal, mutated in OsRab5a, has a similar phenotype, while gpalgpa2 double mutant exacerbated the conditions. In addition, OsVPS9A interacted with OsRAB5A in vitro and in vivo. We con- cluded that OsVPS9A and OsRAB5A may work together and play a regulatory role in DV-mediated post-Golgi proglutelin trafficking to PBII (PSV). The evidence that DVs might fuse directly to PBII (PSV) to deliver cargos is also presented.展开更多
Low temperature is a major environmental factor that limits plant growth and productivity.Although transient elevation of cytoplasmic calcium has long been recognized as a critical signal for plant cold tolerance,the ...Low temperature is a major environmental factor that limits plant growth and productivity.Although transient elevation of cytoplasmic calcium has long been recognized as a critical signal for plant cold tolerance,the calcium channels responsible for this process have remained largely elusive.Here we report that OsCNGC9,a cyclic nucleotide-gated channel,positively regulates chilling tolerance by mediating cytoplasmic calcium elevation in rice(Oryza sativa).We showed that the loss-of-function mutant of OsCNGC9 is defective in cold-induced calcium influx and more sensitive to prolonged cold treatment,whereas OsCNGC9 overexpression confers enhanced cold tolerance.Mechanistically,we demonstrated that in response to chilling stress,OsSAPK8,a homolog of Arabidopsis thaliana OST1,phosphorylates and activates OsCNGC9 to trigger Ca2+influx.Moreover,we found that the transcription of OsCNGC9 is activated by a rice dehydration-responsive element-binding transcription factor,OsDREB1A.Taken together,our results suggest that OsCNGC9 enhances chilling tolerance in rice through regulating cold-induced calcium influx and cytoplasmic calcium elevation.展开更多
Pentatricopeptide repeat(PPR) proteins, composing one of the largest protein families in plants,are involved in RNA binding and regulation of organelle RNA metabolism at the posttranscriptional level. Although several...Pentatricopeptide repeat(PPR) proteins, composing one of the largest protein families in plants,are involved in RNA binding and regulation of organelle RNA metabolism at the posttranscriptional level. Although several PPR proteins have been implicated in endosperm development in rice(Oryza sativa), the molecular functions of many PPRs remain obscure. Here, we identified a rice endosperm mutant named floury endosperm 18(flo18) with pleiotropic defects in both reproductive and vegetative development.Map-based cloning and complementation tests showed that FLO18 encodes a mitochondriontargeted P-type PPR protein with 15 PPR motifs.Mitochondrial function was disrupted in the flo18 mutant, as evidenced by decreased assembly of Complex I in the mitochondrial electron transport chain and altered mitochondrial morphology. Loss of FLO18 function resulted in defective 5′-end processing of mitochondrial nad5 transcripts encoding subunit 5 of nicotinamide adenine dinucleotide hydrogenase. These results suggested that FLO18 is involved in 5′-end processing of nad5 messenger RNA and plays an important role in mitochondrial function and endosperm development.展开更多
Native species may decline quickly when confronted with an exotic species to which they are not adapted. The extent of decline may depend on the abundance of an invader and the length of time since it first arrived in...Native species may decline quickly when confronted with an exotic species to which they are not adapted. The extent of decline may depend on the abundance of an invader and the length of time since it first arrived in the community (residence time), and the interaction between these two variables. We tested these effects using data on the effects of American bullfrog Lithobates catesbeianus invasion on native frog communities in 65 permanent lentic waters on islands in the Zhoushan Archipel- ago, China. We examined variation in native frog abundance and species richness in relation to features of the American bullfrog invasion, habitat disturbance, characteristics of the water body and fish communities and the presence of red swamp crayfish. Bullfrog invaded sites had lower native frog density and species richness, higher submerged vegetation cover and greater fre- quency of repairs to the water body than did non-invaded sites. The minimum adequate general linear mixed models showed that both native frog density and species richness were negatively related to post-metamorphosis bullfrog density, and that native frog species richness was also positively related to the vegetation cover. There was no effect on either native frog density or species richness of residence time or its interaction with bullfrog density, or of the abundance of bullfrog tadpoles. The results suggested that post-metamorphosis bullfrogs had impacts on native frog communities in the islands, and that the extents of these impacts are proportional to post-metamorphosis bullfrog density展开更多
Autophagy is an evolutionarily conserved process where long-lived and damaged organelles are degraded.Autophagy has been widely associated with several ageing-process as well in diseases such as neurodegeneration,canc...Autophagy is an evolutionarily conserved process where long-lived and damaged organelles are degraded.Autophagy has been widely associated with several ageing-process as well in diseases such as neurodegeneration,cancer and fibrosis,and is now being utilised as a target in these diseases.Idiopathic pulmonary fibrosis(IPF)is a progressive,interstitial lung disease with limited treatment options available.It is characterised by abnormal extracellular matrix(ECM)deposition by activated myofibroblasts.It is understood that repetitive microinjuries to aged-alveolar epithelium combined with genetic factors drive the disease.Several groups have demonstrated that autophagy is altered in IPF although whether autophagy has a protective effect or not is yet to be determined.Autophagy has also been shown to influence many other processes including epithelial-mesenchymal transition(EMT)and endothelialmesenchymal transition(EndMT)which are known to be key in the pathogenesis of IPF.In this review,we summarise the findings of evidence of altered autophagy in IPF lungs,as well as examine its roles within lung fibrosis.Given these findings,together with the growing use of autophagy manipulation in a clinical setting,this is an exciting area for further research in the study of lung fibrosis.展开更多
The iron-chalcogenide high temperature superconductor Fe(Se,Te)(FST) has been reported to exhibit complex magnetic ordering and nontrivial band topology which may lead to novel superconducting phenomena. However, the ...The iron-chalcogenide high temperature superconductor Fe(Se,Te)(FST) has been reported to exhibit complex magnetic ordering and nontrivial band topology which may lead to novel superconducting phenomena. However, the recent studies have so far been largely concentrated on its band and spin structures while its mesoscopic electronic and magnetic response, crucial for future device applications, has not been explored experimentally. Here, we used scanning superconducting quantum interference device microscopy for its sensitivity to both local diamagnetic susceptibility and current distribution in order to image the superfluid density and supercurrent in FST. We found that in FST with 10% interstitial Fe,whose magnetic structure was heavily disrupted, bulk superconductivity was significantly suppressed whereas edge still preserved strong superconducting diamagnetism. The edge dominantly carried supercurrent despite of a very long magnetic penetration depth. The temperature dependences of the superfluid density and supercurrent distribution were distinctively different between the edge and the bulk.Our Heisenberg modeling showed that magnetic dopants stabilize anti-ferromagnetic spin correlation along the edge, which may contribute towards its robust superconductivity. Our observations hold implication for FST as potential platforms for topological quantum computation and superconducting spintronics.展开更多
基金supported by National Key Research and Development Program of China(No.2019YFA0607103)the National Forestry and Grassland Administration of China(91217-2022,202999922001,213023721203)。
文摘The Oriental Stork(Ciconia boyciana)is listed as'Endangered'on the International Union for the Conservation of Nature(IUCN)Red List of Threatened Species and is classified as a first category nationally protected bird species in China.Understanding this species'seasonal movements and migration will facilitate effective conservation to promote its population.We tagged 27 Oriental Stork nestlings at Xingkai Lake on the Sanjiang Plain in Heilongjiang Province,China,used GPS tracking to follow them over the periods of 2014-2017 and 2019-2022,and confirmed their detailed migratory routes using the spatial analysis function of ArcGIS 10.7.We discovered four migration routes during autumn migration:one common long-distance migration route in which the storks migrated along the coastline of Bohai Bay to the middle and lower reaches of the Yangtze River for wintering,one short-distance migration route in which the storks wintered in Bohai Bay and two other migration routes in which the storks crossed the Bohai Strait around the Yellow River and wintered in South Korea.There were no significant differences in the number of migration days,residence days,migration distances,number of stopovers and average number of days spent at stopover sites between the autumn and spring migrations(P>0.05).However,the storks migrated significantly faster in spring than in autumn(P=0.03).The same individuals did not exhibit a high degree of repetition in their migration timing and route selection in either autumn or spring migration.Even storks from the same nest exhibited considerable between-individual variation in their migration routes.Some important stopover sites were identified,especially in the Bohai Rim Region and on the Songnen Plain,and we further explored the current conservation status at these two important sites.Overall,our results contribute to the understanding of the annual migration,dispersal and protection status of the endangered Oriental Stork and provide a scientific basis for conservation decisions and the development of action plans for this species.
基金funding for this study from National Key R&D Program of China(2018YFA0702800)National Natural Science Foundation of China(12072056)+1 种基金the Fundamental Research Funds for the Central Universities(DUT19LK49)Nantong Science and Technology Plan Project(No.MS22019016).
文摘For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inverse problem,for which the models(e.g.,response matrix)are often ill-posed,resulting in degraded accuracy and impaired noise immunity of load identification.This study aims at identifying external loads in a stiffened plate structure,through comparing the effectiveness of different methods for parameter selection in regulation problems,including the Generalized Cross Validation(GCV)method,the Ordinary Cross Validation method and the truncated singular value decomposition method.With demonstrated high accuracy,the GCV method is used to identify concentrated loads in three different directions(e.g.,vertical,lateral and longitudinal)exerted on a stiffened plate.The results show that the GCV method is able to effectively identify multi-source static loads,with relative errors less than 5%.Moreover,under the situation of swept frequency excitation,when the excitation frequency is near the natural frequency of the structure,the GCV method can achieve much higher accuracy compared with direct inversion.At other excitation frequencies,the average recognition error of the GCV method load identification less than 10%.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774011,11434001,U1530401,and U1430237)
文摘The CryoEM single particle structure determination method has recently received broad attention in the field of structural biology. The structures can be resolved to near-atomic resolutions after model reconstructions from a large number of CryoEM images measuring molecules in different orientations. However, the determining factors for reconstructed map resolution need to be further explored. Here, we provide a theoretical framework in conjunction with numerical simulations to gauge the influence of several key factors to CryoEM map resolutions. If the projection image quality allows orientation assignment, then the number of measured projection images and the quality of each measurement(quantified using average signal-to-noise ratio) can be combined to a single factor, which is dominant to the resolution of reconstructed maps. Furthermore, the intrinsic thermal motion of molecules has significant effects on the resolution. These effects can be quantitatively summarized with an analytical formula that provides a theoretical guideline on structure resolutions for given experimental measurements.
基金the financial support by the National Natural Science Foundation of China (Grant No. 11922415)Guangdong Basic and Applied Basic Research Foundation, China (Grants No. 2019A1515011718)+8 种基金the Pearl River Scholarship Program of Guangdong Province Universities and Colleges (Grants No. 20191001)supported by the National Natural Science Foundation of China (Grants No. 11974432)the National Key R&D Program of China (Grant Nos. 2018YFA0306001 and 2017YFA0206203)the financial support by the National Key Laboratory Development Fund (No. 20190030)partial support by the National Key R&D Program of China (Grant No. 2017YFA0303000)National Natural Science Foundation of China (Grant No. 11827805)Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01)supported by the National Natural Science Foundation of China (Grant Nos. 11904414 and 12174454)the National Key R&D Program of China (Grant No. 2019YFA0705702)。
文摘The relationship between charge-density-wave(CDW) and superconductivity(SC), two vital physical phases in condensed matter physics, has always been the focus of scientists’ research over the past decades. Motivated by this research hotspot, we systematically studied the physical properties of the layered telluride chalcogenide superconductors CuIr_(2-x)Al_(x)Te_(4)(0 ≤x≤ 0.2). Through the resistance and magnetization measurements, we found that the CDW order was destroyed by a small amount of Al doping. Meanwhile, the superconducting transition temperature(T_(c)) kept changing with the change of doping amount and rose towards the maximum value of 2.75 K when x = 0.075. The value of normalized specific heat jump(△C/γT_(c)) for the highest T_(c) sample CuIr_(2-x)Al_(x)Te_(4)was 1.53, which was larger than the BCS value of 1.43 and showed the bulk superconducting nature. In order to clearly show the relationship between SC and CDW states,we propose a phase diagram of T_(c) vs. doping content.
基金supported by the UK Medical Research Council(MR/S025480/1)the UK Academy of Medical Sciences/the Wellcome Trust Springboard Award(SBF002/1038)+2 种基金AAIR Charity.ZX and LY were supported by China Scholarship Council.YZ was supported by an Institute for Life Sciences PhD Studentship.JD was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK(FC001070)the UK Medical Research Council(FC001070)the Wellcome Trust(FC001070).
文摘The factors that determine fibrosis progression or normal tissue repair are largely unknown.We previously demonstrated that autophagy inhibition-mediated epithelial-mesenchymal transition(EMT)in human alveolar epithelial type Il(ATIl)cells augments local myofibroblast differentiation in pulmonary fibrosis by paracrine signaling.Here,we report that liver kinase B1(LKB1)inactivation in ATIl cells inhibits autophagy and induces EMT as a conse-quence.In IPF lungs,this is caused by the down-regulation of CAB39L,a key subunit within the LKB1 complex.3D co-cultures of ATIl cells and MRC5 lung fibroblasts coupled with RNA sequencing(RNA-seq)confirmed that paracrine signaling between LKB1-depleted ATIl cells and fibroblasts augmented myofibroblast differentiation.Together,these data suggest that reduced autophagy caused by LKB1 inhibition can induce EMT in ATIl cells and contribute to fibrosis via aberrant epithelial-fibroblast crosstalk.
基金Yihua Wang would like to acknowledge support by Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)the National Key R&D Program of China(Grant No.2021YFA1400100)+2 种基金the National Natural Science Foundation of China(Grant No.12150003)Hao Li thanks the National Natural Science Foundation of China(Grant No.62201556)the Shanghai Pujiang Program(Grant No.22PJ1415200)for financial support.
文摘Superconducting quantum interference devices(SQUIDs)are directly sensitive to magnetic flux.Nano-fabricated SQUID chip with miniaturized superconducting circuits can be further utilized as scanning probes for imaging of materials.Scanning SQUID microscopy(SSM)combines both high spatial resolution and high magnetic field sensitivity and is especially suitable for studying low dimensional materials with small sensing volumes.Here,we briefly review the fabrication of different types of nano-SQUIDs and the recent progress of utilizing them for scanning microscopy of quantum materials.We focus on but are not limited to topological states,unconventional superconductivity and exotic magnetism with a particular interest in two-dimensional materials.The magnet-ometry,susceptometry and current imaging modes of the SSM coupled with the external tuning of the material by magnetic field,electrical field gating and strain reveals a multitude of information beyond the scopes of charge-sensing probes.
基金supported by the UK Medical Research Council(MR/S025480/1)the UK Academy of Medical Sciences/the Well-come Trust Springboard Award[SBF002\1038]LY and ZX were sup-ported by the China Scholarship Council.
文摘Progressive lung fibrosis is characterized by dysregulated extracellular matrix(ECM)homeostasis.Understand-ing of disease pathogenesis remains limited and has prevented the development of effective treatments.While an abnormal wound-healing response is strongly implicated in lung fibrosis initiation,factors that determine why fi-brosis progresses rather than regular tissue repair occur are not fully explained.Within human lung fibrosis,there is evidence of altered epithelial and mesenchymal populations as well as cells undergoing epithelial-mesenchymal transition(EMT),a dynamic and reversible biological process by which epithelial cells lose their cell polarity and down-regulate cadherin-mediated cell-cell adhesion to gain migratory properties.This review will focus on the role of EMT and dysregulated epithelial-mesenchymal crosstalk in progressive lung fibrosis.
基金supported by grants from the National Key R&D Program of China (2021YFF1000200)National Natural Science Foundation of China (31901513)+6 种基金the “JBGS” Project of Seed Industry Revitalization in Jiangsu Province (JBGS [2021]008)Jiangsu Province Agriculture Independent Innovation Fund Project (CX(19)1002)the Fundamental Research Funds for the Central Universities (KJQN202005)the China Postdoctoral Science Foundation (2019M661864)also supported by the Key Laboratory of Biology, Genetics, and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Chinathe Jiangsu Collaborative Innovation Center for Modern Crop ProductionNational Observation and Research Station of Rice Germplasm Resources, Nanjing, Jiangsu。
文摘Most of the reported P-type pentatricopeptide repeat(PPR) proteins play roles in organelle RNA stabilization and splicing. However, P-type PPRs involved in both RNA splicing and editing have rarely been reported, and their underlying mechanism remains largely unknown. Here, we report a rice floury endosperm22(flo22) mutant with delayed amyloplast development in endosperm cells. Map-based cloning and complementation tests demonstrated that FLO22 encodes a mitochondrion-localized P-type PPR protein.Mutation of FLO22 resulting in defective transsplicing of mitochondrial nad1 intron 1 and perhaps causing instability of mature transcripts affected assembly and activity of complex Ⅰ, and mitochondrial morphology and function. RNA-seq analysis showed that expression levels of many genes involved in starch and sucrose metabolism were significantly down-regulated in the flo22mutant compared with the wild type, whereas genes related to oxidative phosphorylation and the tricarboxylic acid cycle were significantly upregulated. In addition to involvement in splicing as a P-type PPR protein, we found that FLO22 interacted with DYW3, a DYW-type PPR protein, and they may function synergistically in mitochondrial RNA editing. The present work indicated that FLO22 plays an important role in endosperm development and plant growth by participating in nad1 maturation and multi-site editing of mitochondrial messager RNA.
基金supported by grants from the National Natural Science Foundation of China(91935301)National Natural Science Foundation of China Joint Program(U1701232)+4 种基金Jiangsu Science and Technology Development Program(BE2021360)Jiangsu Agricultural Science and Technology Innovation Fund Project(SCX(19)1079)Jiangsu Province Agriculture Independent Innovation Fund Project(CX(19)1002)National Key Research and Development Program of China(2016YFD0100903)the Fundamental Research Funds for the Central Universities(JCQY201902).
文摘Plastid-to-nucleus retrograde signaling coordinates nuclear gene expression with chloroplast developmental status and is essential for the photoautotrophic lifestyle of plants.Previous studies have established that tetrapyrrole biosynthesis(TPB)and plastid gene expression(PGE)play essential roles in plastid retrograde signaling during early chloroplast biogenesis;however,their functional relationship remains unknown.In this study,we generated a series of rice TPB-related gun(genome uncoupled)mutants and systematically analyzed their effects on nuclear and plastid gene expression under normal conditions or when subjected to treatments with norflurazon(NF;a noncompetitive inhibitor of carotenoid biosynthesis)and/or lincomycin(Lin;a specific inhibitor of plastid translation).We show that under NF treatment,expression of plastid-encoded polymerase(PEP)-transcribed genes is significantly reduced in the wild type but is derepressed in the TPB-related gun mutants.We further demonstrate that the derepressed expression of PEPtranscribed genes may be caused by increased expression of the PEP core subunit and nuclear-encoded sigma factors and by elevated copy numbers of plastid genome per haploid genome.In addition,we show that expression of photosynthesis-associated nuclear genes(PhANGs)and PEP-transcribed genes is correlated in the rice TPB-related gun mutants,with or without NF or Lin treatment.A similar correlation between PhANGs and PGE is also observed in the Arabidopsis gun4 and gun5 mutants.Moreover,we show that increased expression of PEP-transcribed plastid genes is necessary for the gun phenotype in NF-treated TPB-related gun mutants.Further,we provide evidence that these TPB-related GUN genes act upstream of GUN1 in the regulation of retrograde signaling.Taken together,our results suggest that the TPB-related GUN genes control retrograde plastid signaling by regulating the PGE-dependent retrograde signaling pathway.
基金supported by an Academy of Medical Sciences,United Kingdom/the Wellcome Trust Springboard Award(No.SBF002\1038)the Medical Research Council,United Kingdom(No.MR/S025480/1)+1 种基金supported by the Wessex Medical Trust,United KingdomFor the purpose of open access,the authors have applied a CC-BY public copyright license to any Author Accepted Manuscript version arising from this submission.
文摘Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene and has a role in inhibiting the oncogenic AKT signaling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3 ) into phosphatidylinositol 4,5-bisphosphate (PIP2 ). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumor phenotype and tumorigenesis. Identifying targeted therapies for inactive tumor suppressor genes such as PTEN has been challenging as it is difficult to restore the tumor suppressor functions. Therefore, focusing on the downstream signaling pathways to discover a targeted therapy for inactive tumor suppressor genes has highlighted the importance of synthetic lethality studies. This review focused on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.
基金funded by National Natural Science Foundation of China under Grant No.52205009Natural Science Foundation of Jiangsu Province under Grant No.BK20210233Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems.
文摘With the aid of different types of mechanoreceptors,human is capable of perceiving stimuli from surrounding environments and manipulating various objects dexterously.In this paper,a bio-inspired tactile fingertip is designed mimicking human fingertip in both structures and functionalities.Two pairs of strain gages and(Polyvinylidene Fluoride)PVDF films are perpendicularly arranged to simulate the Fast-Adapting(FA)and Slowly Adapting(SA)type mechanoreceptors in human hands,while silicones,Polymethyl Methacrylate(PMMA),and electronic wires are applied to mimic the skin,bone and nerve fibers.Both static and dynamic forces can be perceived sensitively.A preprocessing electric circuit is further designed to transform the resistor changes into voltages,and then filter and amplify the four-channel signals.In addition to strong robustness due to the embedded structure,the developed fingertip is found sensitive to deformations via a force test experiment.Finally,two robotic experiments explore its recognition ability of contact status and object surface.Excellent performance is found with high accuracy of 99.72%achieved in discriminating six surfaces that are ubiquitous in daily life,which demonstrates the effectiveness of our designed tactile sensor.
基金supported by Natural Science Research of Jiangsu Higher Education Institutions of China(No.19KJB320002)the Science and Technology Project of Nantong City China(No.JC2020010)+4 种基金a Research Startup Fund of Nantong UniversityYihua Wang was supported by the UK Medical Research Council(No.MR/S025480/1)the UK Royal Society(No.IEC/NSFC/191030)Zhenglin Jiang was supported by the National Natural Science Foundation of China(No.82171869 and 81671859)Xia Li was supported by the Science and Technology Project of Nantong City China(No.MS12020019 and JC2021079).
文摘Idiopathic pulmonary fibrosis (IPF) is a dreadful, chronic, and irreversibly progressive disease leading to death with a few effective treatments. Our previous study suggested that repetitive hyperbaric oxygen (HBO) treatment alleviates bleomycin-induced pulmonary fibrosis in mice. Here, we investigated the protective mechanism of HBO treatment against pulmonary fibrosis using an integrated approach. Analyzing publicly available expression data from the mouse model of bleomycin-induced pulmonary fibrosis as well as IPF patients, several potential mechanisms of relevance to IPF pathology were identified, including increased epithelial-to-mesenchymal transition (EMT) and glycolysis. High EMT or glycolysis scores in bronchoalveolar lavage were strong independent predictors of mortality in multivariate analysis. These processes were potentially driven by hypoxia and blocked by HBO treatment. Together, these data support HBO treatment as a viable strategy against pulmonary fibrosis.
基金supported by the Medical Research Council(UK)(No.MR/S025480/1)an Academy of Medical Sciences/the Wellcome Trust Springboard Award(UK)(No.SBF002\1038).
文摘Despite recent advances in immunotherapy and targeted therapy,the mortality rate seen in lung cancer(LC)is the highest of all cancer forms.The recent topical coronavirus disease 19(COVID-19)and its subsequent pandemic have resulted in over 505 million confirmed cases and approxi-mately 6.2 million fatalities as of April 2022,1 with a stag-gering 30%e50%mortality rate seen in LC patients with COVID-19.2 Cancer patients,in particular,are highly vulnerable to COVID-19 infection due to immunosuppression.
基金supported by National Natural Science Foundation of China (31571259)National High Technology Research and Development Program of China (2011AA10A101)
文摘Traits such as grain shape, panicle length and seed shattering, play important roles in grain yield and harvest. In this study, the cloning and functional analysis of PANICLE TRAITS 2 (PT2), a novel gene from the Indica rice Chuandali (CDL), is reported. PT2 is synonymous with Growth-Regulating Factor 4 (OsGRF4), which encodes a growth-regulating factor that positively regulates grain shape and panicle length and negatively regulates seed shattering. Higher expression of OsGRF4 is correlated with larger grain, longer panicle and lower seed shattering. A unique OsGRF4 mutation, which occurs at the OsmiRNA396 target site of OsGRF4, seems to be associated with high levels of OsGRF4 expression, and results in phenotypic difference. Further research showed that OsGRF4 regulated two cytokinin dehydrogenase precursor genes (CKX5 and CKX1) resulting in increased cytokinin levels, which might affect the panicle traits. High storage capacity and moderate seed shattering of OsGRF4 may be useful in high-yield breeding and mechanized harvesting of rice. Our findings provide additional insight into the molecular basis of panicle growth.
基金projects from the Ministry of Agriculture of China for Transgenic Research,the Program for New Century Excellent Talents in University of Ministry of Education of China,the Fundamental Research Funds for the Central Universities,the Earmarked Fund for Modern Agro-industry Technology Research System,and the Jiangsu Natural Science Foundation Project,Science and Technology Development Program
文摘In the rice endosperm cells, glutelins are synthesized on rough endoplasmic reticulum as proglutelins and are sorted to the protein storage vacuoles (PSVs) called protein body IIs (PBIIs), where they are converted to the mature forms. Dense vesicle (DV)-mediated trafficking of proglutelins in rice seeds has been proposed, but the post-Golgi control of this process is largely unknown. Whether DV can fuse directly with PSV is another matter of debate. In this study, we propose a regulatory mechanism underlying DV-mediated, post-Golgi proglutelin trafficking to PBII (PSV). gpa2, a loss- of-function mutant of OsVPS9A, which encodes a GEF of OsRAB5A, accumulated uncleaved proglutelins. Proglutelins were mis-targeted to the paramural bodies and to the apoplast along the cell wall in the form of DVs, which led to a con- comitant reduction in PBII size. Previously reported gpal, mutated in OsRab5a, has a similar phenotype, while gpalgpa2 double mutant exacerbated the conditions. In addition, OsVPS9A interacted with OsRAB5A in vitro and in vivo. We con- cluded that OsVPS9A and OsRAB5A may work together and play a regulatory role in DV-mediated post-Golgi proglutelin trafficking to PBII (PSV). The evidence that DVs might fuse directly to PBII (PSV) to deliver cargos is also presented.
基金This work was supported by the National Key R&D Program of China(grants 2020YFE0202300,2016YFD0100903,and 2017YFD0100401)the Agricultural Science and Technology Innovation Program of CAAS(grants CAAS-ZDXT2018001,CAAS-ZDXT2018002,CAASZDXT2019003,and Young Talent to Y.R.)+1 种基金the Jiangsu Science and Technology Development Program(BE2017368)the Central Public-Interest Scientific Institution Basal Research Fund(no.Y2020YJ10).This work was also supported by the Key Laboratory of Biology,Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River,the Ministry of Agriculture of P.R.China,and the Jiangsu Collaborative Innovation Center for Modern Crop Production.
文摘Low temperature is a major environmental factor that limits plant growth and productivity.Although transient elevation of cytoplasmic calcium has long been recognized as a critical signal for plant cold tolerance,the calcium channels responsible for this process have remained largely elusive.Here we report that OsCNGC9,a cyclic nucleotide-gated channel,positively regulates chilling tolerance by mediating cytoplasmic calcium elevation in rice(Oryza sativa).We showed that the loss-of-function mutant of OsCNGC9 is defective in cold-induced calcium influx and more sensitive to prolonged cold treatment,whereas OsCNGC9 overexpression confers enhanced cold tolerance.Mechanistically,we demonstrated that in response to chilling stress,OsSAPK8,a homolog of Arabidopsis thaliana OST1,phosphorylates and activates OsCNGC9 to trigger Ca2+influx.Moreover,we found that the transcription of OsCNGC9 is activated by a rice dehydration-responsive element-binding transcription factor,OsDREB1A.Taken together,our results suggest that OsCNGC9 enhances chilling tolerance in rice through regulating cold-induced calcium influx and cytoplasmic calcium elevation.
基金This research was supported by grants from the National Transgenic Science and Technology Program(2019ZX08010-003)the Agricultural Science and Technology Innovation Program of CAAS(CAAS-ZDXT2018001)+1 种基金the Fundamental Research Funds for the Central Universities(KYTZ201601)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0657)。
文摘Pentatricopeptide repeat(PPR) proteins, composing one of the largest protein families in plants,are involved in RNA binding and regulation of organelle RNA metabolism at the posttranscriptional level. Although several PPR proteins have been implicated in endosperm development in rice(Oryza sativa), the molecular functions of many PPRs remain obscure. Here, we identified a rice endosperm mutant named floury endosperm 18(flo18) with pleiotropic defects in both reproductive and vegetative development.Map-based cloning and complementation tests showed that FLO18 encodes a mitochondriontargeted P-type PPR protein with 15 PPR motifs.Mitochondrial function was disrupted in the flo18 mutant, as evidenced by decreased assembly of Complex I in the mitochondrial electron transport chain and altered mitochondrial morphology. Loss of FLO18 function resulted in defective 5′-end processing of mitochondrial nad5 transcripts encoding subunit 5 of nicotinamide adenine dinucleotide hydrogenase. These results suggested that FLO18 is involved in 5′-end processing of nad5 messenger RNA and plays an important role in mitochondrial function and endosperm development.
基金Acknowledgements We thank Feng XU and Yanping WANG for helping a part of field works and Richard Duncan for comments on the manuscript. This work was supported by a grant from National Science foundation (No. 30870312) and by a grant from the "973" program (No. 2007CB411600).
文摘Native species may decline quickly when confronted with an exotic species to which they are not adapted. The extent of decline may depend on the abundance of an invader and the length of time since it first arrived in the community (residence time), and the interaction between these two variables. We tested these effects using data on the effects of American bullfrog Lithobates catesbeianus invasion on native frog communities in 65 permanent lentic waters on islands in the Zhoushan Archipel- ago, China. We examined variation in native frog abundance and species richness in relation to features of the American bullfrog invasion, habitat disturbance, characteristics of the water body and fish communities and the presence of red swamp crayfish. Bullfrog invaded sites had lower native frog density and species richness, higher submerged vegetation cover and greater fre- quency of repairs to the water body than did non-invaded sites. The minimum adequate general linear mixed models showed that both native frog density and species richness were negatively related to post-metamorphosis bullfrog density, and that native frog species richness was also positively related to the vegetation cover. There was no effect on either native frog density or species richness of residence time or its interaction with bullfrog density, or of the abundance of bullfrog tadpoles. The results suggested that post-metamorphosis bullfrogs had impacts on native frog communities in the islands, and that the extents of these impacts are proportional to post-metamorphosis bullfrog density
基金This work was supported by the Medical Research Council(No.MR/S025480/1)the Academy of Medical Sciences/the Wellcome Trust Springboard Award(No.SBF002\1038)Wessex Medical Trust and AAIR Charity.CH was supported by Gerald Kerkut Charitable Trust and University of Southampton Central VC Scholarship Scheme.
文摘Autophagy is an evolutionarily conserved process where long-lived and damaged organelles are degraded.Autophagy has been widely associated with several ageing-process as well in diseases such as neurodegeneration,cancer and fibrosis,and is now being utilised as a target in these diseases.Idiopathic pulmonary fibrosis(IPF)is a progressive,interstitial lung disease with limited treatment options available.It is characterised by abnormal extracellular matrix(ECM)deposition by activated myofibroblasts.It is understood that repetitive microinjuries to aged-alveolar epithelium combined with genetic factors drive the disease.Several groups have demonstrated that autophagy is altered in IPF although whether autophagy has a protective effect or not is yet to be determined.Autophagy has also been shown to influence many other processes including epithelial-mesenchymal transition(EMT)and endothelialmesenchymal transition(EndMT)which are known to be key in the pathogenesis of IPF.In this review,we summarise the findings of evidence of altered autophagy in IPF lungs,as well as examine its roles within lung fibrosis.Given these findings,together with the growing use of autophagy manipulation in a clinical setting,this is an exciting area for further research in the study of lung fibrosis.
基金Yihua Wang would like to acknowledge partial support by the Ministry of Science and Technology of China(2016YFA0301002 and 2017YFA0303000)the National Natural Science Foundation of China(11827805)+4 种基金Shanghai Municipal Science and Technology Major Project Da Jiang would like to acknowledge partial support by the‘‘Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(XDB04040300)the National Natural Science Foundation of China(11274333)Hundred Talents Program of the Chinese Academy of Sciences.Shaoyu Yin would like to acknowledge support by the National Natural Science Foundation of China(11704072)Work at Stanford was supported by an NSF IMR-MIP(DMR-0957616)part of the National Nanotechnology Coordinated Infrastructure under award ECCS-1542152.
文摘The iron-chalcogenide high temperature superconductor Fe(Se,Te)(FST) has been reported to exhibit complex magnetic ordering and nontrivial band topology which may lead to novel superconducting phenomena. However, the recent studies have so far been largely concentrated on its band and spin structures while its mesoscopic electronic and magnetic response, crucial for future device applications, has not been explored experimentally. Here, we used scanning superconducting quantum interference device microscopy for its sensitivity to both local diamagnetic susceptibility and current distribution in order to image the superfluid density and supercurrent in FST. We found that in FST with 10% interstitial Fe,whose magnetic structure was heavily disrupted, bulk superconductivity was significantly suppressed whereas edge still preserved strong superconducting diamagnetism. The edge dominantly carried supercurrent despite of a very long magnetic penetration depth. The temperature dependences of the superfluid density and supercurrent distribution were distinctively different between the edge and the bulk.Our Heisenberg modeling showed that magnetic dopants stabilize anti-ferromagnetic spin correlation along the edge, which may contribute towards its robust superconductivity. Our observations hold implication for FST as potential platforms for topological quantum computation and superconducting spintronics.