Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion...Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs.By contrast,the exfoliated two-dimensional phosphorene owns negligible volume variation,and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics,while its positive influence has not been discussed yet.Herein,a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage.The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions,but also endow the nanocomposite with favorable piezoelectricity,thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator.By waltzing with the MXene framework,the optimized electrode exhibits enhanced kinetics and stability,achieving stable cycling performances for 1,000 cycles at 2 A g^(-1),and delivering a high reversible capacity of 524 m Ah g^(-1)at-20℃,indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics.展开更多
The proportion of elderly patients in intensive care is increasing, and a significant proportion of them require mechanical ventilation. How to implement safe and effective mechanical ventilation for elderly patients,...The proportion of elderly patients in intensive care is increasing, and a significant proportion of them require mechanical ventilation. How to implement safe and effective mechanical ventilation for elderly patients, and when appropriate off-line is an important issue in the field of critical care medicine. Appropriate sedation can improve patient outcomes, but excessive sedation may lead to prolonged mechanical ventilation and increase the risk of complications. Elderly patients should be closely monitored and evaluated on an individual basis while offline, and the sedation regimen should be dynamically adjusted. This requires the healthcare team to consider the patient’s sedation needs, disease status, and pharmacodynamics and pharmacokinetics of the drug to arrive at the best strategy. Although the current research has provided valuable insights and strategies for sedation and off-line management, there are still many problems to be further explored and solved.展开更多
Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethyle...Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethylene glycol(EG)→ethanol(ET))and"MA route"(DMO→MG→methyl acetate(MA))were proposed over traditional Cu based catalysts and Mo-based or Fe-based catalysts,respectively.Herein,tunable yield of ET(93.7%)and MA(72.1%)were obtained through different reaction routes over WO_(x) modified Cu/SiO_(2) catalysts,and the corresponding reaction route was further proved by kinetic study and in-situ DRIFTS technology.Mechanistic studies demonstrated that H_(2) activation ability,acid density and Cu-WO_(x) interaction on the catalysts were tuned by regulating the surface W density,which resulted in the different reaction pathway and product selectivity.What's more,high yield of MA produced from DMO hydrogenation was firstly reported with the H_(2) pressure as low as 0.5 MPa.展开更多
Objective: To compare the effects of extracorporeal membrane oxygenation (ECMO) and routine mechanical ventilation on mortality and the risk of associated adverse events in patients with severe viral pneumonia. Method...Objective: To compare the effects of extracorporeal membrane oxygenation (ECMO) and routine mechanical ventilation on mortality and the risk of associated adverse events in patients with severe viral pneumonia. Methods: PubMed, the Cochrane Library, Embase, Web of Science, and other databases were searched to collect case-control or cohort studies on prognoses associated with ECMO treatment for viral pneumonia. Search terms included extracorporeal membrane oxygenation, ECMO, viral pneumonia, COVID-19, influenza, MERS, and others. According to the PICOS principle, two evaluators independently screened the literature, extracted the data, cross-checked the data, and extracted the data again. Two researchers evaluated the risk of bias in the included studies according to the Newcastle-Ottawa Scale (NOS) and cross-checked the results. Meta-analysis was performed using RevMan 5.3 software. Results: Nine studies were included for analysis, encompassing a total of 4,330 patients, which were categorized into ECMO and CMV groups. There were no significant differences between the two groups in most baseline data;however, the ECMO group had a lower oxygenation index, and some studies reported higher SOFA scores in the ECMO group compared to the CMV group. There was no significant difference in in-hospital mortality between the two groups. The length of ICU stay, total hospital stay, and total mechanical ventilation time were longer in the ECMO group than in the CMV group. In terms of adverse events, there was no significant difference in the occurrence of kidney injury between the two groups. Bleeding events were reported in two studies, with more bleeding events occurring in the ECMO group. According to the subgroup analysis of different virus types, there were no statistical differences in the above aspects among patients with swine flu, novel coronavirus, and MERS. Conclusion: ECMO has a certain degree of positive significance in the treatment of severe viral pneumonia, but there is no significant difference in the treatment outcome of ECMO across different epidemic periods. The timing of ECMO treatment, patient management, and withdrawal evaluation still need further research.展开更多
Biochar-based transition metal catalysts have been identified as excellent peroxymonosulfate(PMS)activators for producing radicals used to degrade organic pollutants.However,the radical-dominated pathways for PMS acti...Biochar-based transition metal catalysts have been identified as excellent peroxymonosulfate(PMS)activators for producing radicals used to degrade organic pollutants.However,the radical-dominated pathways for PMS activation severely limit their practical applications in the degradation of organic pollutants from wastewater due to side reactions between radicals and the coexisting anions.Herein,bimetallic Fe/Mn-loaded hydroxyl-rich biochar(FeMn-OH-BC)is synthesized to activate PMS through nonradical-dominated pathways.The as-prepared FeMn-OH-BC exhibits excellent catalytic activity for degrading tetracycline at broad pH conditions ranging from 5 to 9,and about 85.0%of tetracycline is removed in 40 min.Experiments on studying the influences of various anions(HCO_(3)^(−),NO_(3)^(−),and H_(2)PO_(4)^(−))show that the inhibiting effect is negligible,suggesting that the FeMn-OHBC based PMS activation is dominated by nonradical pathways.Electron paramagnetic resonance measurements and quenching tests provide direct evidence to confirm that 1O2 is the major reactive oxygen species generated from FeMn-OH-BC based PMS activation.Theoretical calculations further reveal that the FeMn-OH sites in FeMn-OH-BC are dominant active sites for PMS activation,which have higher adsorption energy and stronger oxidative activity towards PMS than OH-BC sites.This work provides a new route for driving PMS activation by biochar-based transition metal catalysts through nonradical pathways.展开更多
The mixed-cation lead halide perovskites have emerged as a new class of promising light harvesting materials for solar cells. The formamidinium(FA), methylammonium(MA) and Cs cations are widely studied in the fiel...The mixed-cation lead halide perovskites have emerged as a new class of promising light harvesting materials for solar cells. The formamidinium(FA), methylammonium(MA) and Cs cations are widely studied in the field of mixed-cation perovskites. Here, we have investigated ethylammonium(EA) as an alternative cation to fabricate a mixed-cation perovskite of MA_(1-x)EA_xPbI_3. We have characterized the materials using the X-ray diffraction(XRD), scanning electron microscope(SEM), and UV–vis spectrum. Our results have confirmed the successful incorporation of EA cations into MAPbI_3. Interestingly, the optimal amount of EA to achieve the best performance is quite low. This is different from the FA–MA mixed-cation perovskites although EA and FA have similar radii. In short, the EA–MA mixed-cation perovskite has some material and device properties highly distinguishable from the FA–MA one.展开更多
In recent years,as living standards have continued to improve,the number of diabetes patients in China,along with the incidence of complications associated with the disease,has been increasing.Among these complication...In recent years,as living standards have continued to improve,the number of diabetes patients in China,along with the incidence of complications associated with the disease,has been increasing.Among these complications,diabetic foot disease is one of the main causes of disability and death in diabetic patients.Due to the differences in economy,culture,religion and level of medical care available across different regions,preventive and treatment methods and curative results for diabetic foot vary greatly.In multidisciplinary models built around diabetic foot,the timely assessment and diagnosis of wounds and appropriate methods of prevention and treatment with internal and external surgery are key to clinical practice for this pathology.In 2019,under the leadership of the Jiangsu Medical Association and Chinese Diabetes Society,the writing group for the Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease(2020 edition)was established with the participation of scholars from the specialist areas of endocrinology,burn injury,vascular surgery,orthopedics,foot and ankle surgery and cardiology.Drawing lessons from diabetic foot guidelines from other countries,this guide analyses clinical practices for diabetic foot,queries the theoretical basis and grades and gives recommendations based on the characteristics of the pathology in China.This paper begins with assessments and diagnoses of diabetic foot,then describes treatments for diabetic foot in detail,and ends with protections for high-risk feet and the prevention of ulcers.This manuscript covers the disciplines of internal medicine,surgical,nursing and rehabilitation and describes a total of 50 recommendations that we hope will provide procedures and protocols for clinicians dealing with diabetic foot.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2017YFB1002900)the National Natural Science Foundation of China(No.51661145021)+5 种基金the Key Natural Science Program of Jiangsu Province(Nos.BE2022118,BE2021643 and BE2016772)the Traction Project of Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province(No.Q816000217)the Scholarship from Key Laboratory of Modern Optical Technologies of Ministry of Education of Chinathe Priority Academic Program Development(PAPD)of Jiangsu Higher Education InstitutionsChina Prosperity Green Industry Foundation of Ministry of Industry and Information Technologysupported by the open project of synchrotron radiation characterization of chain oriented/stacked polar topology and energy modulation of supramolecules(No.2100982)。
文摘Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs.By contrast,the exfoliated two-dimensional phosphorene owns negligible volume variation,and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics,while its positive influence has not been discussed yet.Herein,a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage.The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions,but also endow the nanocomposite with favorable piezoelectricity,thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator.By waltzing with the MXene framework,the optimized electrode exhibits enhanced kinetics and stability,achieving stable cycling performances for 1,000 cycles at 2 A g^(-1),and delivering a high reversible capacity of 524 m Ah g^(-1)at-20℃,indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics.
文摘The proportion of elderly patients in intensive care is increasing, and a significant proportion of them require mechanical ventilation. How to implement safe and effective mechanical ventilation for elderly patients, and when appropriate off-line is an important issue in the field of critical care medicine. Appropriate sedation can improve patient outcomes, but excessive sedation may lead to prolonged mechanical ventilation and increase the risk of complications. Elderly patients should be closely monitored and evaluated on an individual basis while offline, and the sedation regimen should be dynamically adjusted. This requires the healthcare team to consider the patient’s sedation needs, disease status, and pharmacodynamics and pharmacokinetics of the drug to arrive at the best strategy. Although the current research has provided valuable insights and strategies for sedation and off-line management, there are still many problems to be further explored and solved.
基金supported by National Natural Science Foundation of China (No.22102147 and 22002151)State Key Laboratory of Chemical Engineering (No.SKL-ChE-22A02)+2 种基金Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ21B030009the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA29050300)Qinchuang Yuan high-level innovation and entrepreneurship talents implementing project (No.QCYRCXM-2022-177)。
文摘Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethylene glycol(EG)→ethanol(ET))and"MA route"(DMO→MG→methyl acetate(MA))were proposed over traditional Cu based catalysts and Mo-based or Fe-based catalysts,respectively.Herein,tunable yield of ET(93.7%)and MA(72.1%)were obtained through different reaction routes over WO_(x) modified Cu/SiO_(2) catalysts,and the corresponding reaction route was further proved by kinetic study and in-situ DRIFTS technology.Mechanistic studies demonstrated that H_(2) activation ability,acid density and Cu-WO_(x) interaction on the catalysts were tuned by regulating the surface W density,which resulted in the different reaction pathway and product selectivity.What's more,high yield of MA produced from DMO hydrogenation was firstly reported with the H_(2) pressure as low as 0.5 MPa.
文摘Objective: To compare the effects of extracorporeal membrane oxygenation (ECMO) and routine mechanical ventilation on mortality and the risk of associated adverse events in patients with severe viral pneumonia. Methods: PubMed, the Cochrane Library, Embase, Web of Science, and other databases were searched to collect case-control or cohort studies on prognoses associated with ECMO treatment for viral pneumonia. Search terms included extracorporeal membrane oxygenation, ECMO, viral pneumonia, COVID-19, influenza, MERS, and others. According to the PICOS principle, two evaluators independently screened the literature, extracted the data, cross-checked the data, and extracted the data again. Two researchers evaluated the risk of bias in the included studies according to the Newcastle-Ottawa Scale (NOS) and cross-checked the results. Meta-analysis was performed using RevMan 5.3 software. Results: Nine studies were included for analysis, encompassing a total of 4,330 patients, which were categorized into ECMO and CMV groups. There were no significant differences between the two groups in most baseline data;however, the ECMO group had a lower oxygenation index, and some studies reported higher SOFA scores in the ECMO group compared to the CMV group. There was no significant difference in in-hospital mortality between the two groups. The length of ICU stay, total hospital stay, and total mechanical ventilation time were longer in the ECMO group than in the CMV group. In terms of adverse events, there was no significant difference in the occurrence of kidney injury between the two groups. Bleeding events were reported in two studies, with more bleeding events occurring in the ECMO group. According to the subgroup analysis of different virus types, there were no statistical differences in the above aspects among patients with swine flu, novel coronavirus, and MERS. Conclusion: ECMO has a certain degree of positive significance in the treatment of severe viral pneumonia, but there is no significant difference in the treatment outcome of ECMO across different epidemic periods. The timing of ECMO treatment, patient management, and withdrawal evaluation still need further research.
基金This work was financially supported by the talent starting-up project of research development fund of Zhejiang Agriculture and Forestry University(No.2034020103)the Overseas Expertise Introduction Project for Discipline Innovation(No.111 Project D18008).
文摘Biochar-based transition metal catalysts have been identified as excellent peroxymonosulfate(PMS)activators for producing radicals used to degrade organic pollutants.However,the radical-dominated pathways for PMS activation severely limit their practical applications in the degradation of organic pollutants from wastewater due to side reactions between radicals and the coexisting anions.Herein,bimetallic Fe/Mn-loaded hydroxyl-rich biochar(FeMn-OH-BC)is synthesized to activate PMS through nonradical-dominated pathways.The as-prepared FeMn-OH-BC exhibits excellent catalytic activity for degrading tetracycline at broad pH conditions ranging from 5 to 9,and about 85.0%of tetracycline is removed in 40 min.Experiments on studying the influences of various anions(HCO_(3)^(−),NO_(3)^(−),and H_(2)PO_(4)^(−))show that the inhibiting effect is negligible,suggesting that the FeMn-OHBC based PMS activation is dominated by nonradical pathways.Electron paramagnetic resonance measurements and quenching tests provide direct evidence to confirm that 1O2 is the major reactive oxygen species generated from FeMn-OH-BC based PMS activation.Theoretical calculations further reveal that the FeMn-OH sites in FeMn-OH-BC are dominant active sites for PMS activation,which have higher adsorption energy and stronger oxidative activity towards PMS than OH-BC sites.This work provides a new route for driving PMS activation by biochar-based transition metal catalysts through nonradical pathways.
基金the support of the NSFC(Grant 51372151 and21303103)Huoyingdong Grant(151046)
文摘The mixed-cation lead halide perovskites have emerged as a new class of promising light harvesting materials for solar cells. The formamidinium(FA), methylammonium(MA) and Cs cations are widely studied in the field of mixed-cation perovskites. Here, we have investigated ethylammonium(EA) as an alternative cation to fabricate a mixed-cation perovskite of MA_(1-x)EA_xPbI_3. We have characterized the materials using the X-ray diffraction(XRD), scanning electron microscope(SEM), and UV–vis spectrum. Our results have confirmed the successful incorporation of EA cations into MAPbI_3. Interestingly, the optimal amount of EA to achieve the best performance is quite low. This is different from the FA–MA mixed-cation perovskites although EA and FA have similar radii. In short, the EA–MA mixed-cation perovskite has some material and device properties highly distinguishable from the FA–MA one.
基金The National Natural Science Foundation of China(grant number:81770810)。
文摘In recent years,as living standards have continued to improve,the number of diabetes patients in China,along with the incidence of complications associated with the disease,has been increasing.Among these complications,diabetic foot disease is one of the main causes of disability and death in diabetic patients.Due to the differences in economy,culture,religion and level of medical care available across different regions,preventive and treatment methods and curative results for diabetic foot vary greatly.In multidisciplinary models built around diabetic foot,the timely assessment and diagnosis of wounds and appropriate methods of prevention and treatment with internal and external surgery are key to clinical practice for this pathology.In 2019,under the leadership of the Jiangsu Medical Association and Chinese Diabetes Society,the writing group for the Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease(2020 edition)was established with the participation of scholars from the specialist areas of endocrinology,burn injury,vascular surgery,orthopedics,foot and ankle surgery and cardiology.Drawing lessons from diabetic foot guidelines from other countries,this guide analyses clinical practices for diabetic foot,queries the theoretical basis and grades and gives recommendations based on the characteristics of the pathology in China.This paper begins with assessments and diagnoses of diabetic foot,then describes treatments for diabetic foot in detail,and ends with protections for high-risk feet and the prevention of ulcers.This manuscript covers the disciplines of internal medicine,surgical,nursing and rehabilitation and describes a total of 50 recommendations that we hope will provide procedures and protocols for clinicians dealing with diabetic foot.