期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
The Tibetan Plateau bridge:Influence of remote teleconnections from extratropical and tropical forcings on climate anomalies 被引量:2
1
作者 yimin liu Wei Yu +3 位作者 Jilan Jiang Tingting Ma Jiangyu Mao Guoxiong Wu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第1期28-33,共6页
本文回顾了青藏高原桥梁作用方面的最新研究进展,涉及北大西洋气候异常对春,夏亚洲季风和厄尔尼诺-南方涛动(ENSO)事件的遥相关影响,热带海洋异常和中国东部极端气候异常之间的联系以及华南春雨的季节内变化等.介绍了年际时间尺度上,冬... 本文回顾了青藏高原桥梁作用方面的最新研究进展,涉及北大西洋气候异常对春,夏亚洲季风和厄尔尼诺-南方涛动(ENSO)事件的遥相关影响,热带海洋异常和中国东部极端气候异常之间的联系以及华南春雨的季节内变化等.介绍了年际时间尺度上,冬-春季北大西洋海表温度强迫如何影响南亚季风的季节性转变以及随后ENSO事件的触发.5月份青藏高原上空显著的负感热斜压结构,为北大西洋影响亚洲季风和ENSO提供了桥梁效应,夏季北大西洋涛动与华东夏季降水变化显著相关,高原潜热在这一关系中起着桥梁作用.另一方面,这种高原桥梁效应也存在于从热带海洋异常到东亚夏季极端降水事件的连接中,以及从中纬度波列到华南春雨准双周振荡的联系中. 展开更多
关键词 青藏高原桥梁作用 遥相关 北大西洋 厄尔尼诺-南方涛动 热带对流 气候异常和极端事件
下载PDF
Impacts of Future Changes in Heavy Precipitation and Extreme Drought on the Economy over South China and Indochina 被引量:1
2
作者 Bin TANG Wenting HU +4 位作者 Anmin DUAN yimin liu Wen BAO Yue XIN Xianyi YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1184-1200,I0022-I0034,共30页
Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distribut... Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region. 展开更多
关键词 CMIP6 heavy precipitation extreme drought South China INDOCHINA economic impact
下载PDF
Shallow Convection Dataset Simulated by Three Different Large Eddy Models
3
作者 Yaxin ZHAO Xiaocong WANG +2 位作者 yimin liu Guoxiong WU Yanjie liu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期754-766,共13页
Shallow convection plays an important role in transporting heat and moisture from the near-surface to higher altitudes,yet its parameterization in numerical models remains a great challenge,partly due to the lack of h... Shallow convection plays an important role in transporting heat and moisture from the near-surface to higher altitudes,yet its parameterization in numerical models remains a great challenge,partly due to the lack of high-resolution observations.This study describes a large eddy simulation(LES)dataset for four shallow convection cases that differ primarily in inversion strength,which can be used as a surrogate for real data.To reduce the uncertainty in LES modeling,three different large eddy models were used,including SAM(System for Atmospheric Modeling),WRF(Weather Research and Forecasting model),and UCLA-LES.Results show that the different models generally exhibit similar behavior for each shallow convection case,despite some differences in the details of the convective structure.In addition to grid-averaged fields,conditionally sampled variables,such as in-cloud moisture and vertical velocity,are also provided,which are indispensable for calculation of the entrainment/detrainment rate.Considering the essentiality of the entraining/detraining process in the parameterization of cumulus convection,the dataset presented in this study is potentially useful for validation and improvement of the parameterization of shallow convection. 展开更多
关键词 large eddy simulation SAM WRF UCLA-LES shallow convection entraining process
下载PDF
Circulation Background and Genesis Mechanism of a Cold Vortex over the Tibetan Plateau during Late April 2018
4
作者 Duming GAO Jiangyu MAO +1 位作者 Guoxiong WU yimin liu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1201-1216,共16页
A cold vortex occurred over the northeastern Tibetan Plateau(TP)on 27 April 2018 and subsequently brought excessive rainfall to the spring farming area in southern China when moving eastward.This study investigates th... A cold vortex occurred over the northeastern Tibetan Plateau(TP)on 27 April 2018 and subsequently brought excessive rainfall to the spring farming area in southern China when moving eastward.This study investigates the genesis mechanism of the cold TP vortex(TPV)by diagnosing reanalysis data and conducting numerical experiments.Results demonstrate that the cold TPV was generated in a highly baroclinic environment with significant contributions of positive potential vorticity(PV)forcing from the tropopause and diurnal thermodynamic impact from the surface.As a positive PV anomaly in the lower stratosphere moved towards the TP,the PV forcing at the tropopause pushed the tropospheric isentropic surfaces upward,forming isentropic-isplacement ascent and reducing static stability over the TP.The descent of the tropopause over the TP also produced a tropopause folding over the northeastern TP associated with a narrow high-PV column intruding downwards over the TPV genesis site,resulting in ascending air in the free atmosphere.This,in conjunction with the descending air in the valley area during the night,produced air stretching just at the TPV genesis site.Because the surface cooling at night increased the surface static stability,the aforementioned vertical air-stretching thus converted the produced static stability to vertical vorticity.Consequently,the cold TPV was generated over the valley at night. 展开更多
关键词 TROPOPAUSE PV forcing air column stretching static stability vertical vorticity
下载PDF
Synergistic Effect of the Planetary-scale Disturbance, Typhoon and Meso-β-scale Convective Vortex on the Extremely Intense Rainstorm on 20 July 2021 in Zhengzhou 被引量:4
5
作者 Guanshun ZHANG Jiangyu MAO +5 位作者 Wei HUA Xiaofei WU Ruizao SUN Ziyu YAN yimin liu Guoxiong WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期428-446,共19页
On 20 July 2021,northern Henan Province in China experienced catastrophic flooding as a result of an extremely intense rainstorm,with a record-breaking hourly rainfall of 201.9 mm during 0800–0900 UTC and daily accum... On 20 July 2021,northern Henan Province in China experienced catastrophic flooding as a result of an extremely intense rainstorm,with a record-breaking hourly rainfall of 201.9 mm during 0800–0900 UTC and daily accumulated rainfall in Zhengzhou City exceeding 600 mm(“Zhengzhou 7.20 rainstorm”for short).The multi-scale dynamical and thermodynamical mechanisms for this rainstorm are investigated based on station-observed and ERA-5 reanalysis datasets.The backward trajectory tracking shows that the warm,moist air from the northwestern Pacific was mainly transported toward Henan Province by confluent southeasterlies on the northern side of a strong typhoon In-Fa(2021),with the convergent southerlies associated with a weaker typhoon Cempaka(2021)concurrently transporting moisture northward from South China Sea,supporting the rainstorm.In the upper troposphere,two equatorward-intruding potential vorticity(PV)streamers within the planetary-scale wave train were located over northern Henan Province,forming significant divergent flow aloft to induce stronger ascending motion locally.Moreover,the converged moist air was also blocked by the mountains in western Henan Province and forced to rise so that a deep meso-β-scale convective vortex(MβCV)was induced over the west of Zhengzhou City.The PV budget analyses demonstrate that the MβCV development was attributed to the positive feedback between the rainfall-related diabatic heating and high-PV under the strong upward PV advection during the Zhengzhou 7.20 rainstorm.Importantly,the MβCV was forced by upper-level larger-scale westerlies becoming eastward-sloping,which allowed the mixtures of abundant raindrops and hydrometeors to ascend slantwise and accumulate just over Zhengzhou City,resulting in the record-breaking hourly rainfall locally. 展开更多
关键词 extreme rainstorm potential vorticity trajectory tracking planetary-scale disturbance meso-β-scale convective system
下载PDF
Factors responsible for the increasing trend of mei-yu season rainfall during 1979-2020 over the western and eastern mei-yu domain 被引量:1
6
作者 Xuejie Zhao Guoxiong Wu +2 位作者 Jiangyu Mao yimin liu Bian He 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第3期27-32,共6页
近几十年来,江淮流域梅雨监测区(MMD)的梅雨期(6-7月)降水呈增加趋势.本文基于1979-2020年台站观测降水资料和ERA5再分析数据,从大气环流变异的角度揭示了这种长期增加趋势的主要影响因素.发现在MMD范围内,梅雨期降水趋势的增幅东部大... 近几十年来,江淮流域梅雨监测区(MMD)的梅雨期(6-7月)降水呈增加趋势.本文基于1979-2020年台站观测降水资料和ERA5再分析数据,从大气环流变异的角度揭示了这种长期增加趋势的主要影响因素.发现在MMD范围内,梅雨期降水趋势的增幅东部大于西部.水汽收支定量诊断表明,异常的蒸发和水汽平流对MMD西部和东部降水增加趋势的相对贡献是不同的.MMD西部(东部)的降水趋势主要归咎于增强的局地蒸发(增强的垂直水汽平流),后者又取决于MMD对流层中,低层的异常气旋环流.这种位于气候平均的西太平洋副热带高压西北侧的异常气旋有助于MMD东部600 hPa以上的水汽辐散增加,伴随加强的850 hPa水汽辐合,从而导致垂直水汽平流的增强.相反,该异常气旋则有利于增强MMD西部的局地蒸发. 展开更多
关键词 梅雨期降水 增加趋势 蒸发 水汽平流
下载PDF
Tuning desolvation kinetics of in-situ weakly solvating polyacetal electrolytes for dendrite-free lithium metal batteries
7
作者 Peng Wen yimin liu +8 位作者 Jinyan Mao Xiaotong liu Weiping Li Yang Ren Yang Zhou Fei Shao Mao Chen Jun Lin Xinrong Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期340-347,共8页
The host structure of polymers significantly influences ion transport and interfacial stability of electrolytes,dictating battery cycle life and safety for solid-state lithium metal batteries.Despite promising propert... The host structure of polymers significantly influences ion transport and interfacial stability of electrolytes,dictating battery cycle life and safety for solid-state lithium metal batteries.Despite promising properties of ethylene oxide-based electrolytes,their typical clamp-like coordination geometry leads to crowd solvation sheath and overly strong interactions between Li^(+)and electrolytes,rendering difficult dissociation of Li+and unfavorable solid electrolyte interface(SEI).Herein,we explore weakly solvating characteristics of polyacetal electrolytes owing to their alternately changing intervals between–O–coordinating sites in the main chain.Such structural asymmetry leads to unique distorted helical solvation sheath,and can effectively reduce Li^(+)-electrolyte binding and tune Li^(+)desolvation kinetics in the insitu formed polymer electrolytes,yielding anion-derived SEI and dendrite-free Li electrodeposition.Combining with photoinitiated cationic ring-opening polymerization,polyacetal electrolytes can be instantly formed within 5 min at the surface of electrode,with high segmental chain motion and well adapted interfaces.Such in-situ polyacetal electrolytes enabled more than 1300-h of stable lithium electrodeposition and prolonged cyclability over 200 cycles in solid-state batteries at ambient temperatures,demonstrating the vital role of molecular structure in changing solvating behavior and Li deposition stability for high-performance electrolytes. 展开更多
关键词 Polymer electrolyte In-situ photoinitiated polymerization Weakly solvating effect POLYACETAL Lithium electrodeposition
下载PDF
Evaluation of the interannual variability in the East Asian summer monsoon in AMIP and historical experiments of CAS FGOALS-f3-L
8
作者 Xiaoqi Zhang Bian He +2 位作者 Qing Bao yimin liu Guoxiong Wu 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第1期14-21,共8页
对东亚夏季季风(EASM)模拟的评估可以提高我们对亚洲季风动力和气候模拟的理解.在这项研究中,通过使用中国科学院(CAS)全球海洋-大气-陆地系统(FGOALS-f3-L)模式参加的第六次耦合模式相互比较计划(CMIP6)中的大气模式相互比较计划(AMIP... 对东亚夏季季风(EASM)模拟的评估可以提高我们对亚洲季风动力和气候模拟的理解.在这项研究中,通过使用中国科学院(CAS)全球海洋-大气-陆地系统(FGOALS-f3-L)模式参加的第六次耦合模式相互比较计划(CMIP6)中的大气模式相互比较计划(AMIP)和历史(historical)试验,明确了EASM的年际变率的模拟能力.通过多变量经验正交函数(MV-EOF)分析发现,观测的EASM的主导模态为西太平洋上的太平洋-日本模态,并伴有局部反气旋异常.主导模态的方差贡献率为24.6%.历史(historical)试验可以基本再现这种空间模态,其方差贡献率较AMIP试验更接近于观测.与AMIP试验相比,历史(historical)试验还能更好地模拟EASM变率的时间频率.然而,由于历史(historical)模拟没有在积分开始时应用初始化过程,而AMIP试验受到海表面温度(SST)的约束,因此主成分(PC1)的位相在历史(historical)试验中没有得到较好地再现.进一步分析发现,印度洋和西太平洋热带地区的海气相互作用对EASM的模拟非常重要,而EASM气候变率的模拟可能与厄尔尼诺-南方涛动(ENSO)的模拟能力有关,这值得进一步分析. 展开更多
关键词 东亚夏季季风 年际变化 CMIP6 模式评估 FGOALS-f3-L
下载PDF
Analysis of surface temperature bias over the Tibetan plateau in the CAS FGOALS-f3-L model 被引量:1
9
作者 Yao Wu yimin liu +5 位作者 Jiandong Li Qing Bao Bian He Lei Wang Xiaocong Wang Jinxiao Li 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第1期69-75,共7页
The Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System atmospheric component model(FGOALS-f3-L)participated in Phase 6 of the Coupled Model Intercomparison Project,but its reproducibility of surf... The Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System atmospheric component model(FGOALS-f3-L)participated in Phase 6 of the Coupled Model Intercomparison Project,but its reproducibility of surface temperature(T_(s))over the Tibetan Plateau(TP)as a key climatically sensitive region remains unclear.This study evaluates the capability of FGOALS-f3-L in reproducing the climatological T_(s)over the TP relative to the Climate Forecast System Reanalysis.The results show that FGOALS-f3-L can reasonably capture the spatial pattern of T_(s)but underestimates the annual mean T_(s)for the whole TP.The simulated T_(s)for the whole TP shows a cold bias in winter and spring and a warm bias in summer and autumn.Further quantitative analysis based on the surface energy budget equation shows that the surface albedo feedback(SAF)term strongly contributes to the annual,winter,and spring mean cold bias in the western TP and to the warm bias in the eastern TP.Compared with the SAF term,the surface sensible and latent heat flux terms make nearly opposite contributions to the T_(s)bias and considerably offset the bias due to the SAF term.The cloud radiative forcing term strongly contributes to the annual and seasonal mean weak cold bias in the eastern TP.The longwave radiation term associated with the overestimated water vapor content accounts for a large portion of the warm bias over the whole TP in summer and autumn.Improving land surface and cloud processes in FGOALS-f3-L is critical to reduce the T_(s)bias over the TP. 展开更多
关键词 Tibetan Plateau Surface temperature FGOALS-f3-L Surface energy budget equation Cloud radiation
下载PDF
CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation 被引量:21
10
作者 Bian HE Qing BAO +14 位作者 Xiaocong WANG Linjiong ZHOU Xiaofei WU yimin liu Guoxiong WU Kangjun CHEN Sicheng HE Wenting HU Jiandong LI Jinxiao LI Guokui NIAN Lei WANG Jing YANG Minghua ZHANG Xiaoqi ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第8期771-778,共8页
The outputs of the Chinese Academy of Sciences(CAS) Flexible Global Ocean–Atmosphere–Land System(FGOALS-f3-L) model for the baseline experiment of the Atmospheric Model Intercomparison Project simulation in the Diag... The outputs of the Chinese Academy of Sciences(CAS) Flexible Global Ocean–Atmosphere–Land System(FGOALS-f3-L) model for the baseline experiment of the Atmospheric Model Intercomparison Project simulation in the Diagnostic,Evaluation and Characterization of Klima common experiments of phase 6 of the Coupled Model Intercomparison Project(CMIP6) are described in this paper. The CAS FGOALS-f3-L model, experiment settings, and outputs are all given. In total,there are three ensemble experiments over the period 1979–2014, which are performed with different initial states. The model outputs contain a total of 37 variables and include the required three-hourly mean, six-hourly transient, daily and monthly mean datasets. The baseline performances of the model are validated at different time scales. The preliminary evaluation suggests that the CAS FGOALS-f3-L model can capture the basic patterns of atmospheric circulation and precipitation well, including the propagation of the Madden–Julian Oscillation, activities of tropical cyclones, and the characterization of extreme precipitation. These datasets contribute to the benchmark of current model behaviors for the desired continuity of CMIP. 展开更多
关键词 CMIP6 AMIP FGOALS-f3-L MJO tropical CYCLONE extreme precipitation
下载PDF
Understanding the Surface Temperature Cold Bias in CMIP5 AGCMs over the Tibetan Plateau 被引量:19
11
作者 Xiaolei CHEN yimin liu Guoxiong WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第12期1447-1460,共14页
The temperature biases of 28 CMIP5 AGCMs are evaluated over the Tibetan Plateau(TP) for the period 1979–2005. The results demonstrate that the majority of CMIP5 models underestimate annual and seasonal mean surface 2... The temperature biases of 28 CMIP5 AGCMs are evaluated over the Tibetan Plateau(TP) for the period 1979–2005. The results demonstrate that the majority of CMIP5 models underestimate annual and seasonal mean surface 2-m air temperatures(Tas) over the TP. In addition, the ensemble of the 28 AGCMs and half of the individual models underestimate annual mean skin temperatures(Ts) over the TP. The cold biases are larger in Tasthan in Ts, and are larger over the western TP. By decomposing the Tsbias using the surface energy budget equation, we investigate the contributions to the cold surface temperature bias on the TP from various factors, including the surface albedo-induced bias, surface cloud radiative forcing, clear-sky shortwave radiation, clear-sky downward longwave radiation, surface sensible heat flux, latent heat flux,and heat storage. The results show a suite of physically interlinked processes contributing to the cold surface temperature bias.Strong negative surface albedo-induced bias associated with excessive snow cover and the surface heat fluxes are highly anticorrelated, and the cancelling out of these two terms leads to a relatively weak contribution to the cold bias. Smaller surface turbulent fluxes lead to colder lower-tropospheric temperature and lower water vapor content, which in turn cause negative clear-sky downward longwave radiation and cold bias. The results suggest that improvements in the parameterization of the area of snow cover, as well as the boundary layer, and hence surface turbulent fluxes, may help to reduce the cold bias over the TP in the models. 展开更多
关键词 surface temperature cold bias CMIP5 AMIP Tibetan Plateau surface energy budget
下载PDF
Vertical Structures of Convective and Stratiform Clouds in Boreal Summer over the Tibetan Plateau and Its Neighboring Regions 被引量:8
12
作者 Yafei YAN yimin liu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第10期1089-1102,I0001,I0002,共16页
Cloud is essential in the atmosphere, condensing water vapor and generating strong convective or large-scale persistent precipitation. In this work, the relationships between cloud vertical macro- or microphysical pro... Cloud is essential in the atmosphere, condensing water vapor and generating strong convective or large-scale persistent precipitation. In this work, the relationships between cloud vertical macro- or microphysical properties, radiative heating rate, and precipitation for convective and stratiform clouds in boreal summer over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. The precipitation intensity caused by convective clouds is twofold stronger than that by stratiform clouds. The vertical macrophysics of both cloud types show similar features over the TP, with the region weakening the precipitation intensity and compressing the cloud vertical expansion and variation in cloud top height, but having an uplift effect on the average cloud top height. The vertical microphysics of both cloud types under conditions of no rain over the TP are characterized by lower-level ice water, ice particles with a relatively larger range of sizes, and a relatively lower occurrence of denser ice particles. The features are similar to other regions when precipitation enhances, but convective clouds gather denser and larger ice particles than stratiform clouds over the TP. The atmospheric shortwave (longwave) heating (cooling) rate strengthens with increased precipitation for both cloud types. The longwave cooling layer is thicker when the rainfall rate is less than 100 mm d?1, but the net heating layer is typically compressed for the profiles of both cloud types over the TP. This study provides insights into the associations between clouds and precipitation, and an observational basis for improving the simulation of convective and stratiform clouds over the TP in climate models. 展开更多
关键词 CloudSat/CALIPSO cloud vertical structures CONVECTIVE PRECIPITATION STRATIFORM PRECIPITATION TIBETAN Plateau
下载PDF
PV Perspective of Impacts on Downstream Extreme Rainfall Event of a Tibetan Plateau Vortex Collaborating with a Southwest China Vortex 被引量:7
13
作者 Guanshun ZHANG Jiangyu MAO +1 位作者 yimin liu Guoxiong WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第11期1835-1851,共17页
An extreme rainfall event occurred over the middle and lower reaches of the Yangtze Basin(MLY)during the end of June 2016,which was attributable to a Tibetan Plateau(TP)Vortex(TPV)in conjunction with a Southwest China... An extreme rainfall event occurred over the middle and lower reaches of the Yangtze Basin(MLY)during the end of June 2016,which was attributable to a Tibetan Plateau(TP)Vortex(TPV)in conjunction with a Southwest China Vortex(SWCV).The physical mechanism for this event was investigated from Potential Vorticity(PV)and omega perspectives based on MERRA-2 reanalysis data.The cyclogenesis of the TPV over the northwestern TP along with the lower-tropospheric SWCV was found to involve a midtropospheric large-scale flow reconfiguration across western and eastern China with the formation of a high-amplitude Rossby wave.Subsequently,the eastward-moving TPV coalesced vertically with the SWCV over the eastern Sichuan Basin due to the positive vertical gradient of the TPV-related PV advection,leading the lower-tropospheric jet associated with moisture transport to intensify greatly and converge over the downstream MLY.The merged TPV−SWCV specially facilitated the upper-tropospheric isentropic-gliding ascending motion over the MLY.With the TPV-embedded mid-tropospheric trough migrating continuously eastward,the almost stagnant SWCV was re-separated from the overlying TPV,forming a more eastward-tilted high-PV configuration to trigger stronger ascending motion including isentropic-gliding,isentropic-displacement,and diabatic heating-related ascending components over the MLY.This led to more intense rainfall.Quantitative PV diagnoses demonstrate that both the coalescence and subsequent re-separation processes of the TPV with the SWCV were largely dominated by horizontal PV advection and PV generation due to vertically nonuniform diabatic heating,as well as the feedback of condensation latent heating on the isentropic-displacement vertical velocity. 展开更多
关键词 extreme rainfall Tibetan Plateau vortex Southwest China vortex PV vertical velocity
下载PDF
CAS FGOALS-f3-L Model Datasets for CMIP6 GMMIP Tier-1 and Tier-3 Experiments 被引量:6
14
作者 Bian HE yimin liu +11 位作者 Guoxiong WU Qing BAO Tianjun ZHOU Xiaofei WU Lei WANG Jiandong LI Xiaocong WANG Jinxiao LI Wenting HU Xiaoqi ZHANG Chen SHENG and Yiqiong TANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第1期18-28,共11页
The Chinese Academy of Sciences(CAS)Flexible Global Ocean Atmosphere Land System(FGOALS-f3-L)model datasets prepared for the sixth phase of the Coupled Model Intercomparison Project(CMIP6)Global Monsoons Model Interco... The Chinese Academy of Sciences(CAS)Flexible Global Ocean Atmosphere Land System(FGOALS-f3-L)model datasets prepared for the sixth phase of the Coupled Model Intercomparison Project(CMIP6)Global Monsoons Model Intercomparison Project(GMMIP)Tier-1 and Tier-3 experiments are introduced in this paper,and the model descriptions,experimental design and model outputs are demonstrated.There are three simulations in Tier-1,with different initial states,and five simulations in Tier-3,with different topographies or surface thermal status.Specifically,Tier-3 contains four orographic perturbation experiments that remove the Tibetan Iranian Plateau,East African and Arabian Peninsula highlands,Sierra Madre,and Andes,and one thermal perturbation experiment that removes the surface sensible heating over the Tibetan Iranian Plateau and surrounding regions at altitudes above 500 m.These datasets will contribute to CMIP6’s value as a benchmark to evaluate the importance of long-term and short-term trends of the sea surface temperature in monsoon circulations and precipitation,and to a better understanding of the orographic impact on the global monsoon system over highlands. 展开更多
关键词 global monsoon CMIP6 GMMIP Tibetan Plateau orographic perturbation
下载PDF
Localization Algorithm of Indoor Wi-Fi Access Points Based on Signal Strength Relative Relationship and Region Division 被引量:4
15
作者 Wenyan liu Xiangyang Luo +3 位作者 yimin liu Jianqiang liu Minghao liu Yun Q.Shi 《Computers, Materials & Continua》 SCIE EI 2018年第4期71-93,共23页
Precise localization techniques for indoor Wi-Fi access points(APs)have important application in the security inspection.However,due to the interference of environment factors such as multipath propagation and NLOS(No... Precise localization techniques for indoor Wi-Fi access points(APs)have important application in the security inspection.However,due to the interference of environment factors such as multipath propagation and NLOS(Non-Line-of-Sight),the existing methods for localization indoor Wi-Fi access points based on RSS ranging tend to have lower accuracy as the RSS(Received Signal Strength)is difficult to accurately measure.Therefore,the localization algorithm of indoor Wi-Fi access points based on the signal strength relative relationship and region division is proposed in this paper.The algorithm hierarchically divide the room where the target Wi-Fi AP is located,on the region division line,a modified signal collection device is used to measure RSS in two directions of each reference point.All RSS values are compared and the region where the RSS value has the relative largest signal strength is located as next candidate region.The location coordinate of the target Wi-Fi AP is obtained when the localization region of the target Wi-Fi AP is successively approximated until the candidate region is smaller than the accuracy threshold.There are 360 experiments carried out in this paper with 8 types of Wi-Fi APs including fixed APs and portable APs.The experimental results show that the average localization error of the proposed localization algorithm is 0.30 meters,and the minimum localization error is 0.16 meters,which is significantly higher than the localization accuracy of the existing typical indoor Wi-Fi access point localization methods. 展开更多
关键词 Wi-Fi access points indoor localization RSS signal strength relative relationship region division.
下载PDF
The FGOALS climate system model as a modeling tool for supporting climate sciences:An overview 被引量:8
16
作者 TianJun Zhou Bin Wang +18 位作者 YongQiang Yu yimin liu WeiPeng Zheng LiJuan Li Bo Wu PengFei Lin Zhun Guo WenMin Man Qing Bao AnMin Duan HaiLong liu XiaoLong Chen Bian He JianDong Li LiWei Zou XiaoCong Wang LiXia Zhang Yong Sun WenXia Zhang 《Earth and Planetary Physics》 2018年第4期276-291,共16页
Climate system models are useful tools for understanding the interactions among the components of the climate system and predicting/projecting future climate change. The development of climate models has been a centra... Climate system models are useful tools for understanding the interactions among the components of the climate system and predicting/projecting future climate change. The development of climate models has been a central focus of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences(LASG/IAP) since the establishment of the laboratory in 1985. In China, many pioneering component models and fully coupled models of the climate system have been developed by LASG/IAP. The fully coupled climate system developed in the recent decade is named FGOALS(Flexible Global Ocean-Atmosphere-Land System Model). In this paper, an application-oriented review of the LASG/IAP FGOALS model is presented. The improved model performances are demonstrated in the context of cloud-radiation processes, Asian monsoon, ENSO phenomena, Atlantic Meridional Overturning Circulation(AMOC) and sea ice. The FGOALS model has contributed to both CMIP5(Coupled Model Intercomparison Project-phase 5) and IPCC(Intergovernmental Panel on Climate Change) AR5(the Fifth Assessment Report). The release of FGOALS data has supported the publication of nearly 500 papers around the world. The results of FGOALS are cited ~106 times in the IPCC WG1(Working Group 1) AR5. In addition to the traditional long-term simulations and projections, near-term decadal climate prediction is a new set of CMIP experiment, progress of LAGS/IAP in the development of nearterm decadal prediction system is reviewed. The FGOALS model has supported many Chinese national-level research projects and contributed to the national climate change assessment report. The crucial role of FGOALS as a modeling tool for supporting climate sciences is highlighted by demonstrating the model's performances in the simulation of the evolution of Earth's climate from the past to the future. 展开更多
关键词 CLIMATE system model FGOALS CLIMATE VARIABILITY CLIMATE CHANGE
下载PDF
Formation and Variation of the Atmospheric Heat Source over the Tibetan Plateau and Its Climate Effects 被引量:14
17
作者 Guoxiong WU Bian HE +2 位作者 Anmin DUAN yimin liu Wei YU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第10期1169-1184,共16页
To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review pape... To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review paper provides an assessment of the atmospheric heat source(AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land–sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan–Iranian Plateau plays a significant role in generating the Asian summer monsoon(ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon–type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM. 展开更多
关键词 atmospheric heat source Tibetan Plateau climate effect uncertainty
下载PDF
CAS FGOALS-f3-L Large-ensemble Simulations for the CMIP6 Polar Amplification Model Intercomparison Project 被引量:1
18
作者 Bian HE Xiaoqi ZHANG +5 位作者 Anmin DUAN Qing BAO yimin liu Wenting HU Jinxiao LI Guoxiong WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第6期1028-1049,共22页
Large-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project(PAMIP)were carried out by the model group of the Chinese Academy of Sciences(CAS)Flexi... Large-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project(PAMIP)were carried out by the model group of the Chinese Academy of Sciences(CAS)Flexible Global Ocean-Atmosphere-Land System(FGOALS-f3-L).Eight groups of experiments forced by different combinations of the sea surface temperature(SST)and sea ice concentration(SIC)for pre-industrial,present-day,and future conditions were performed and published.The time-lag method was used to generate the 100 ensemble members,with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period.The basic model responses of the surface air temperature(SAT)and precipitation were documented.The results indicate that Arctic amplification is mainly caused by Arctic SIC forcing changes.The SAT responses to the Arctic SIC decrease alone show an obvious increase over high latitudes,which is similar to the results from the combined forcing of SST and SIC.However,the change in global precipitation is dominated by the changes in the global SST rather than SIC,partly because tropical precipitation is mainly driven by local SST changes.The uncertainty of the model responses was also investigated through the analysis of the large-ensemble members.The relative roles of SST and SIC,together with their combined influence on Arctic amplification,are also discussed.All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification. 展开更多
关键词 polar amplification PAMIP large-ensemble simulation sea ice FGOALS-f3-L CMIP6
下载PDF
Interannual Influences of the Surface Potential Vorticity Forcing over the Tibetan Plateau on East Asian Summer Rainfall 被引量:1
19
作者 Chen SHENG Bian HE +2 位作者 Guoxiong WU yimin liu Shaoyu ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第7期1050-1061,共12页
The influences of interannual surface potential vorticity forcing over the Tibetan Plateau(TP)on East Asian summer rainfall(EASR)and upper-level circulation are explored in this study.The results show that the interan... The influences of interannual surface potential vorticity forcing over the Tibetan Plateau(TP)on East Asian summer rainfall(EASR)and upper-level circulation are explored in this study.The results show that the interannual EASR and associated circulations are closely related to the surface potential vorticity negative uniform leading mode(PVNUM)over the TP.When the PVNUM is in the positive phase,more rainfall occurs in the Yangtze River valley,South Korea,Japan,and part of northern China,less rainfall occurs in southern China,and vice versa.A possible mechanism by which PVNUM affects EASR is proposed.Unstable air induced by the positive phase of PVNUM could stimulate significant upward motion and a lower-level anomalous cyclone over the TP.As a result,a dipole heating mode with anomalous cooling over the southwestern TP and anomalous heating over the southeastern TP is generated.Sensitivity experiment results regarding this dipole heating mode indicate that anomalous cooling over the southwestern TP leads to local and northeastern Asian negative height anomalies,while anomalous heating over the southeastern TP leads to local positive height anomalies.These results greatly resemble the realistic circulation pattern associated with EASR.Further analysis indicates that the anomalous water vapor transport associated with this anomalous circulation pattern is responsible for the anomalous EASR.Consequently,changes in surface potential vorticity forcing over the TP can induce changes in EASR. 展开更多
关键词 surface potential vorticity East Asian summer monsoon RAINFALL the Tibetan Plateau
下载PDF
Aerosol characteristics over the Tibetan Plateau simulated with a coupled aerosol-climate model(FGOALS-f3-L) 被引量:1
20
作者 Min Zhao Tie Dai +4 位作者 Hao Wang Bian He Qing Bao yimin liu Guangyu Shi 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第2期60-66,共7页
This study presents the simulated aerosol spatiotemporal characteristics over the Tibetan Plateau(TP)with a newly developed coupled aerosol-climate model(FGOALS-f3-L).The aerosol properties are simulated over the TP f... This study presents the simulated aerosol spatiotemporal characteristics over the Tibetan Plateau(TP)with a newly developed coupled aerosol-climate model(FGOALS-f3-L).The aerosol properties are simulated over the TP for the period 2002-11.The results indicate that soil dust,sulfate,and carbonaceous aerosols(black carbon(BC),organic carbon(OC)and BC/OC)account for 53.6%,32.2%,and 14.2%of the total aerosol mass over the TP,respectively.The simulated aerosol surface mass concentrations and aerosol optical depths(AODs)are evaluated with ground-based and satellite observations,respectively.Underestimations of the aerosol surface mass concentration are found at the Lhasa site,especially for BC and OC.The spatial distribution and interannual variation of AOD are consistent with MODIS observations,with the RMSE of 0.081 and bias of 0.036.Due to the uncertainty of the parameterization of dust emissions,the model’s performance in summer and autumn is much better than that in spring. 展开更多
关键词 AEROSOL Tibetan Plateau FGOALS-f3-L Observation
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部