Raindrop size distribution(DSD)plays a crucial role in enhancing the accuracy of radar quantitative precipitation estimates in the Tibetan Plateau(TP).However,there is a notable scarcity of long-term,high-resolution o...Raindrop size distribution(DSD)plays a crucial role in enhancing the accuracy of radar quantitative precipitation estimates in the Tibetan Plateau(TP).However,there is a notable scarcity of long-term,high-resolution observations in this region.To address this issue,long-term observations from a two-dimensional video disdrometer(2DVD)were leveraged to refine the radar and satellite-based algorithms for quantifying precipitation in the hinterland of the TP.It was observed that weak precipitation(R<1,mm h-1)accounts for 86%of the total precipitation time,while small raindrops(D<2 mm)comprise 99%of the total raindrop count.Furthermore,the average spectral width of the DSD increases with increasing rain rate.The DSD characteristics of convective and stratiform precipitation were discussed across five different rain rates,revealing that convective precipitation in Yangbajain(YBJ)exhibits characteristics similar to maritime-like precipitation.The constrained relationships between the slopeΛand shapeμ,D_(m)and N_(w)of gamma DSDs were derived.Additionally,we established a correlation between the equivalent diameter and drop axis ratio and found that raindrops on the TP attain a nearly spherical shape.Consequently,the application of the rainfall retrieval algorithms of the dual-frequency precipitation radar in the TP is improved based on the statistical results of the DSD.展开更多
Artificial neural networks(ANNs)have led to landmark changes in many fields,but they still differ significantly fromthemechanisms of real biological neural networks and face problems such as high computing costs,exces...Artificial neural networks(ANNs)have led to landmark changes in many fields,but they still differ significantly fromthemechanisms of real biological neural networks and face problems such as high computing costs,excessive computing power,and so on.Spiking neural networks(SNNs)provide a new approach combined with brain-like science to improve the computational energy efficiency,computational architecture,and biological credibility of current deep learning applications.In the early stage of development,its poor performance hindered the application of SNNs in real-world scenarios.In recent years,SNNs have made great progress in computational performance and practicability compared with the earlier research results,and are continuously producing significant results.Although there are already many pieces of literature on SNNs,there is still a lack of comprehensive review on SNNs from the perspective of improving performance and practicality as well as incorporating the latest research results.Starting from this issue,this paper elaborates on SNNs along the complete usage process of SNNs including network construction,data processing,model training,development,and deployment,aiming to provide more comprehensive and practical guidance to promote the development of SNNs.Therefore,the connotation and development status of SNNcomputing is reviewed systematically and comprehensively from four aspects:composition structure,data set,learning algorithm,software/hardware development platform.Then the development characteristics of SNNs in intelligent computing are summarized,the current challenges of SNNs are discussed and the future development directions are also prospected.Our research shows that in the fields of machine learning and intelligent computing,SNNs have comparable network scale and performance to ANNs and the ability to challenge large datasets and a variety of tasks.The advantages of SNNs over ANNs in terms of energy efficiency and spatial-temporal data processing have been more fully exploited.And the development of programming and deployment tools has lowered the threshold for the use of SNNs.SNNs show a broad development prospect for brain-like computing.展开更多
1. Introduction The Atmosphere Profiling Synthetic Observation System (APSOS) is the first ground-based facility for profiling atmospheric variables and multiple constituents in the whole (neutral) atmosphere fro...1. Introduction The Atmosphere Profiling Synthetic Observation System (APSOS) is the first ground-based facility for profiling atmospheric variables and multiple constituents in the whole (neutral) atmosphere from the surface up to the lower thermosphere. It enables simultaneous observations and extensive studies of the atmospheric vertical structure and constituent transport.展开更多
Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume...Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume and anti-electromagnetic disturbance measurement of acceleration.In recent years,with the in-depth research and development of MOEMS accelerometers,the community is flourishing with the possible applications in seismic monitoring,inertial navigation,aerospace and other industrial and military fields.There have been a variety of schemes of MOEMS accelerometers,whereas the performances differ greatly due to different measurement principles and corresponding application requirements.This paper aims to address the pressing issue of the current lack of systematic review of MOEMS accelerometers.According to the optical measurement principle,we divide the MOEMS accelerometers into three categories:the geometric optics based,the wave optics based,and the new optomechanical accelerometers.Regarding the most widely studied category,the wave optics based accelerometers are further divided into four sub-categories,which is based on grating interferometric cavity,Fiber Bragg Grating(FBG),Fabry-Perot cavity,and photonic crystal,respectively.Following a brief introduction to the measurement principles,the typical performances,advantages and disadvantages as well as the potential application scenarios of all kinds of MOEMS accelerometers are discussed on the basis of typical demonstrations.This paper also presents the status and development tendency of MOEMS accelerometers to meet the ever-increasing demand for high-precision acceleration measurement.展开更多
Activin A, which was first described in 1986, has been shown to maintain hippocampal neuronal survival. Activin A increases intracellular free Ca2+ via L-type Ca2+ channels. Our previous study showed that activin A ...Activin A, which was first described in 1986, has been shown to maintain hippocampal neuronal survival. Activin A increases intracellular free Ca2+ via L-type Ca2+ channels. Our previous study showed that activin A promotes neurite growth of dorsal root ganglia in embryonic chickens and inhibits nitric oxide secretion. The present study demonstrated for the first time that activin A could maintain cerebral cortex neuronal survival in vitro for a long period, and that activin A was shown to increase voltage-gated Na+ current (/Na) in Neuro-2a cells, which was recorded by patch clamp technique. The present study revealed a novel mechanism for activin A, as well as the influence of activin A on neurons by regulating expressions of vasoactive intestine peptide and inducible nitric oxide synthase.展开更多
There would be strong product inhibition on ethanol fermentation process if ethanol is not removed in situ from broth. PDMS membrane pervaporation coupled with fermentation is a promising process for efficient bioetha...There would be strong product inhibition on ethanol fermentation process if ethanol is not removed in situ from broth. PDMS membrane pervaporation coupled with fermentation is a promising process for efficient bioethanol production since ethanol inhibition is relieved or eliminated. From the perspective of process operation, membrane separation performance, ethanol fermentation performance and the subsequent processing on membrane downstream are the three key issues. This review aims at contributing a comprehensive overview on the operation performance of the integrated process. The state-of-the-art of the three key issues related to the operation performance is focused. Finally, the tentative perspective on the possible future prospects of the integrated process is briefly presented.展开更多
The unique geographical location and high altitude of the Tibetan Plateau can greatly influence regional weather and climate.In particular, the Asian summer monsoon(ASM) anticyclone circulation system over the Tibetan...The unique geographical location and high altitude of the Tibetan Plateau can greatly influence regional weather and climate.In particular, the Asian summer monsoon(ASM) anticyclone circulation system over the Tibetan Plateau is recognized to be a significant transport pathway for water vapor and pollutants to enter the stratosphere. To improve understanding of these physical processes, a multi-location joint atmospheric experiment was performed over the Tibetan Plateau from late July to August in 2018, funded by the fiveyear(2018–2022) STEAM(stratosphere and troposphere exchange experiment during ASM) project, during which multiple platforms/instruments—including long-duration stratospheric balloons, dropsondes, unmanned aerial vehicles, special sounding systems, and ground-based and satellite-borne instruments—will be deployed. These complementary methods of data acquisition are expected to provide comprehensive atmospheric parameters(aerosol, ozone, water vapor, CO_2, CH_4, CO, temperature, pressure,turbulence, radiation, lightning and wind); the richness of this approach is expected to advance our comprehension of key mechanisms associated with thermal, dynamical, radiative, and chemical transports over the Tibetan Plateau during ASM activity.展开更多
In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including contin...In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%-0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field, electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-to- argon ratio is relatively larger (R = 0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.展开更多
With the continuous development of deep learning,Deep Convolutional Neural Network(DCNN)has attracted wide attention in the industry due to its high accuracy in image classification.Compared with other DCNN hard-ware ...With the continuous development of deep learning,Deep Convolutional Neural Network(DCNN)has attracted wide attention in the industry due to its high accuracy in image classification.Compared with other DCNN hard-ware deployment platforms,Field Programmable Gate Array(FPGA)has the advantages of being programmable,low power consumption,parallelism,and low cost.However,the enormous amount of calculation of DCNN and the limited logic capacity of FPGA restrict the energy efficiency of the DCNN accelerator.The traditional sequential sliding window method can improve the throughput of the DCNN accelerator by data multiplexing,but this method’s data multiplexing rate is low because it repeatedly reads the data between rows.This paper proposes a fast data readout strategy via the circular sliding window data reading method,it can improve the multiplexing rate of data between rows by optimizing the memory access order of input data.In addition,the multiplication bit width of the DCNN accelerator is much smaller than that of the Digital Signal Processing(DSP)on the FPGA,which means that there will be a waste of resources if a multiplication uses a single DSP.A multiplier sharing strategy is proposed,the multiplier of the accelerator is customized so that a single DSP block can complete multiple groups of 4,6,and 8-bit signed multiplication in parallel.Finally,based on two strategies of appeal,an FPGA optimized accelerator is proposed.The accelerator is customized by Verilog language and deployed on Xilinx VCU118.When the accelerator recognizes the CIRFAR-10 dataset,its energy efficiency is 39.98 GOPS/W,which provides 1.73×speedup energy efficiency over previous DCNN FPGA accelerators.When the accelerator recognizes the IMAGENET dataset,its energy efficiency is 41.12 GOPS/W,which shows 1.28×−3.14×energy efficiency compared with others.展开更多
In this paper, we designed and evaluated a duplex detection strategy for micro RNAs(mi RNAs) using universal probe-based target-triggered double hybridization and fluorescent microsphere-based assay system(x MAP ar...In this paper, we designed and evaluated a duplex detection strategy for micro RNAs(mi RNAs) using universal probe-based target-triggered double hybridization and fluorescent microsphere-based assay system(x MAP array). In the absence of target mi RNA, reporter DNA cannot hybridize stably with the immobilized capture DNA due to its low melting temperature. Only after adding target mi RNA, can reporter probe hybridize with capture probe to form a stable three-component complex. This targettriggered stable hybridization makes this method possible for highly selective and sensitive detection of multiple mi RNAs. We exemplified a quantitative detection of duplex mi RNAs with a limit of detection of40 p M. The x MAP array platform holds the potential of extending this approach to simultaneous detection of up to 100 mi RNA targets. Considering the simplicity, rapidity and multiplexing, this work promised a potential detection of multiple mi RNA biomarkers for early disease diagnosis and prognosis.展开更多
This paper developed a sensitive and efficient analytical method for triclocarban (TCC), triclosan (TCS) and Methyl-triclosan (MTCS) determination in environmental water, which involves enrichment by using silicon dio...This paper developed a sensitive and efficient analytical method for triclocarban (TCC), triclosan (TCS) and Methyl-triclosan (MTCS) determination in environmental water, which involves enrichment by using silicon dioxide/polystyrene composite microspheres solid-phase extraction and detection with HPLC-ESI-MS. The influence of several operational parameters, including the eluant and its volume, the flow rate and acidity of water sample were investigated and optimized. Under the optimum conditions, the limits of detection were 1.0 ng/L, 2.5 and 4.5 ng/L for TCC, TCS, and MTCS, respectively. The linearity of the method was observed in the range of 5-2000 ng/L, with correlation coefficients (r2) >.99. The spiked recoveries of TCC, TCS and MTCS in water sampleswereachieved in the range of 89.5% -96.8% with RSD below 5.7%. The proposed method has been successfully applied to analyze real water samples and satisfactory results were achieved.展开更多
The Polian vesicle is the main accessory structure in the water vascular system of sea cucumbers.It can function to hold water vascular fluid under slight pressure and act as a hematopoiesis,excretory,and inflammatory...The Polian vesicle is the main accessory structure in the water vascular system of sea cucumbers.It can function to hold water vascular fluid under slight pressure and act as a hematopoiesis,excretory,and inflammatory response organ.Being the only organ to remain after evisceration,the Polian vesicle may function in the survival and regeneration of sea cucumber.We performed Tandem Mass Tag(TMT)-based proteomics to identify how proteins in the Polian vesicle of Apostichopus japonicus respond to evisceration.Among the 8453 proteins identified from vesicle samples before evisceration(PVOh)and at 6-h post-evisceration(PV6h)and 3-d post-evisceration(PV3d),we detected 222 differentially abundant proteins(DAPs).Most of the annotated DAPs were associated with cell growth and proliferation,immune response and wound healing,substance transport and metabolism,cytoskeleton/cilia/flagella,extracellular matrix,energy production and conversion,protein synthesis and modification,and signal recognition and transduction.Compared with PVOh,fewer DAPs were identified at PV6h,and more DAPs were found at PV3d,and these DAPs were widely distributed among multiple biological processes.Our results indicate that a wide range of biological processes was induced in Polian vesicles in response to evisceration.In particular,Polian vesicles may play important roles in the re storation of coelomocyte s,immune defense,and wound healing in sea cucumber.We propose that the Polian vesicle may be involved in visceral regeneration through nutrition and energy supply and by promoting dedifferentiation and migration.Together,these results provided new insights into the function of the Polian vesicle in A.japonicus post-evisceration.展开更多
The radiation budget at the top of the atmosphere plays a critical role in climate research. Compared to the broadband flux, the spectrally resolved outgoing longwave radiation or flux (OLR), with rich atmospheric i...The radiation budget at the top of the atmosphere plays a critical role in climate research. Compared to the broadband flux, the spectrally resolved outgoing longwave radiation or flux (OLR), with rich atmospheric information in different bands, has obvious advantages in the evaluation of GCMs. Unlike methods that need auxiliary measurements and information, here we take atmospheric infrared sounder (AIRS) observations as an example to build a self-consistent algorithm by an angular distribution model (ADM), based solely on radiance observations, to estimate clear-sky spectrally resolved fluxes over tropical oceans. As the key step for such an ADM, scene type estimations are obtained from radiance and brightness temperature in selected AIRS channels. Then, broadband OLR as well as synthetic spectral fluxes are derived by the spectral ADM and validated using both synthetic spectra and CERES (Clouds and the Earth's Radiant Energy System) observations. In most situations, the mean OLR differences between the spectral ADM products and the CERES observations are within -4-2 W m-2, which is less than 1% of the typical mean clear-sky OLR over tropical oceans. The whole algorithm described in this study can be easily extended to other similar hyperspectral radiance measurements.展开更多
Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis.A number of theories and methods have been successful in describing the optical response of a s...Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis.A number of theories and methods have been successful in describing the optical response of a stratified optical cavity,while the inverse problem,especially the inverse design of a displacement sensitive cavity,remains a significant challenge due to the cost of computation and comprehensive performance requirements.This paper reports a novel inverse design methodology combining the characteristic matrix method,mixed-discrete variables optimization algorithm,and Monte Carlo method-based tolerance analysis.The material characteristics are indexed to enable the mixed-discrete variables optimization,which yields considerable speed and efficiency improvements.This method allows arbitrary response adjustment with technical feasibility and gives a glimpse into the analytical characterization of the optical response.Two entirely different light-displacement responses,including an asymmetric sawtooth-like response and a highly symmetric response,are dug out and experimentally achieved,which fully confirms the validity of the method.The compact Fabry-Perot cavities have a good balance between performance and feasibility,making them promising candidates for displacement transducers.More importantly,the proposed inverse design paves the way for a universal design of optical cavities,or even nanophotonic devices.展开更多
Memristive stateful logic is one of the most promising candidates to implement an in-memory computing system that computes within the storage unit.It can eliminate the costs for the data movement in the traditional vo...Memristive stateful logic is one of the most promising candidates to implement an in-memory computing system that computes within the storage unit.It can eliminate the costs for the data movement in the traditional von Neumann system.However,the instability in the memristors is inevitable due to the limitation of the current fabrication technology,which incurs a great challenge for the reliability of the memristive stateful logic.In this paper,the implication of device instability on the reliability of the logic event is simulated.The mathematical relationship between logic reliability and redundancy has been deduced.By combining the mathematical relationship with the vector-matrix multiplication in a memristive crossbar array,the logic error correction scheme with high throughput has been proposed.Moreover,a universal design paradigm has been put forward for complex logic.And the circuit schematic and the flow of the scheme have been raised.Finally,a 1-bit full adder(FA)based on the NOR logic and NOT logic is simulated and the mathematical evaluation is performed.It demonstrates the scheme can improve the reliability of the logic significantly.And compared with other four error corrections,the scheme which can be suitable for all kinds of R–R logics and V–R logics has the best universality and throughput.Compared with the other two approaches which also need additional complementary metal–oxide semiconductor(CMOS)circuits,it needs fewer transistors and cycles for the error correction.展开更多
On the basis of the fluid theory and the drift-diffusion approximation, a numerical model for dual-frequency atmospheric pressure helium discharge is established, in order to investigate the effects of the high freque...On the basis of the fluid theory and the drift-diffusion approximation, a numerical model for dual-frequency atmospheric pressure helium discharge is established, in order to investigate the effects of the high frequency source (HF) on the characteristics of dual-frequency atmospheric pressure helium discharge. The numerical results showed that the electron heating rate increases with enhancing HF frequency, as well as the particles densities, electron dissipation rate, current density, net electron generation and bulk plasma region. Moreover, it is also observed that the efficient electron heating region moves when the HF frequency has been changed. The plasma parameters are not linear change with the HF frequency linearly increasing.展开更多
The existing single-crystal slicing techniques result in significant material wastage and elevate the production cost o premium-quality thin slices of crystals.Here we report(for the first time,to our knowledge)an app...The existing single-crystal slicing techniques result in significant material wastage and elevate the production cost o premium-quality thin slices of crystals.Here we report(for the first time,to our knowledge)an approach for vertical slicin of large-size single-crystal gain materials by ultrafast laser.By employing aberration correction techniques,the optimi zation of the optical field distribution within the high-refractive-index crystal enables the achievement of a continuou laser-modified layer with a thickness of less than 10μm,oriented perpendicular to the direction of the laser direction The compressed focal spot facilitates crack initiation,enabling propagation under external forces,ultimately achievin the successful slicing of aΦ12 mm crystal.The surface roughness of the sliced Yb:YAG is less than 2.5μm.The result illustrate the potential of low-loss slicing strategy for single-crystal fabrication and pave the way for the future develop ment of thin disk lasers.展开更多
Objectives:The chemical constituents of Poria cocos grown with different substrates vary significantly;thus,identifying and comparing their biomarkers are important.Materials and Methods:Herein,the chemical constituen...Objectives:The chemical constituents of Poria cocos grown with different substrates vary significantly;thus,identifying and comparing their biomarkers are important.Materials and Methods:Herein,the chemical constituents of Poria cocos obtained with five different substrates were assessed using gas chromatography–ion mobility spectrometry(GC-IMS),high-performance liquid chromatography and multivariate statistical analysis.Results:The content of moisture,ash,alcohol-soluble matter,and heavy metals,except for those of the miscellaneous wood Poria cocos,conform to the specifications defined in the Chinese Pharmacopoeia(Edition 2020),and the polysaccharide contents are all greater than 57%.Conclusions:Based on GC-IMS and the established fingerprints,87 compounds were detected,70 of which were identified in each group.Multivariate statistical analysis revealed seven compounds(two esters,three alcohols,and two aldehydes),which could be considered as potential marker compounds for discrimination.展开更多
基金funded by the second Tibetan Plateau Scientific Expe-dition and Research Program(2019QZKK0604).
文摘Raindrop size distribution(DSD)plays a crucial role in enhancing the accuracy of radar quantitative precipitation estimates in the Tibetan Plateau(TP).However,there is a notable scarcity of long-term,high-resolution observations in this region.To address this issue,long-term observations from a two-dimensional video disdrometer(2DVD)were leveraged to refine the radar and satellite-based algorithms for quantifying precipitation in the hinterland of the TP.It was observed that weak precipitation(R<1,mm h-1)accounts for 86%of the total precipitation time,while small raindrops(D<2 mm)comprise 99%of the total raindrop count.Furthermore,the average spectral width of the DSD increases with increasing rain rate.The DSD characteristics of convective and stratiform precipitation were discussed across five different rain rates,revealing that convective precipitation in Yangbajain(YBJ)exhibits characteristics similar to maritime-like precipitation.The constrained relationships between the slopeΛand shapeμ,D_(m)and N_(w)of gamma DSDs were derived.Additionally,we established a correlation between the equivalent diameter and drop axis ratio and found that raindrops on the TP attain a nearly spherical shape.Consequently,the application of the rainfall retrieval algorithms of the dual-frequency precipitation radar in the TP is improved based on the statistical results of the DSD.
基金supported by the National Natural Science Foundation of China(Nos.61974164,62074166,62004219,62004220,and 62104256).
文摘Artificial neural networks(ANNs)have led to landmark changes in many fields,but they still differ significantly fromthemechanisms of real biological neural networks and face problems such as high computing costs,excessive computing power,and so on.Spiking neural networks(SNNs)provide a new approach combined with brain-like science to improve the computational energy efficiency,computational architecture,and biological credibility of current deep learning applications.In the early stage of development,its poor performance hindered the application of SNNs in real-world scenarios.In recent years,SNNs have made great progress in computational performance and practicability compared with the earlier research results,and are continuously producing significant results.Although there are already many pieces of literature on SNNs,there is still a lack of comprehensive review on SNNs from the perspective of improving performance and practicality as well as incorporating the latest research results.Starting from this issue,this paper elaborates on SNNs along the complete usage process of SNNs including network construction,data processing,model training,development,and deployment,aiming to provide more comprehensive and practical guidance to promote the development of SNNs.Therefore,the connotation and development status of SNNcomputing is reviewed systematically and comprehensively from four aspects:composition structure,data set,learning algorithm,software/hardware development platform.Then the development characteristics of SNNs in intelligent computing are summarized,the current challenges of SNNs are discussed and the future development directions are also prospected.Our research shows that in the fields of machine learning and intelligent computing,SNNs have comparable network scale and performance to ANNs and the ability to challenge large datasets and a variety of tasks.The advantages of SNNs over ANNs in terms of energy efficiency and spatial-temporal data processing have been more fully exploited.And the development of programming and deployment tools has lowered the threshold for the use of SNNs.SNNs show a broad development prospect for brain-like computing.
基金supported by the National Natural Science Foundation of China (Grant No. 41127901)
文摘1. Introduction The Atmosphere Profiling Synthetic Observation System (APSOS) is the first ground-based facility for profiling atmospheric variables and multiple constituents in the whole (neutral) atmosphere from the surface up to the lower thermosphere. It enables simultaneous observations and extensive studies of the atmospheric vertical structure and constituent transport.
基金supports from National Natural Science Foundation of China(No.62004166)Fundamental Research Funds for the Central Universities(No.31020190QD027)+2 种基金Natural Science Basic Research Program of Shaanxi(Program No.2020JQ-199)China National Postdoctoral Program for Innovative Talents(No.BX20200279)Key Research and Development Program of Shaanxi Province(2020GXLH-Z-027,2020ZDLGY04-08).
文摘Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume and anti-electromagnetic disturbance measurement of acceleration.In recent years,with the in-depth research and development of MOEMS accelerometers,the community is flourishing with the possible applications in seismic monitoring,inertial navigation,aerospace and other industrial and military fields.There have been a variety of schemes of MOEMS accelerometers,whereas the performances differ greatly due to different measurement principles and corresponding application requirements.This paper aims to address the pressing issue of the current lack of systematic review of MOEMS accelerometers.According to the optical measurement principle,we divide the MOEMS accelerometers into three categories:the geometric optics based,the wave optics based,and the new optomechanical accelerometers.Regarding the most widely studied category,the wave optics based accelerometers are further divided into four sub-categories,which is based on grating interferometric cavity,Fiber Bragg Grating(FBG),Fabry-Perot cavity,and photonic crystal,respectively.Following a brief introduction to the measurement principles,the typical performances,advantages and disadvantages as well as the potential application scenarios of all kinds of MOEMS accelerometers are discussed on the basis of typical demonstrations.This paper also presents the status and development tendency of MOEMS accelerometers to meet the ever-increasing demand for high-precision acceleration measurement.
基金the National Natural Science Foundation of China, No.30903123, 30901329the Project of Science and Technology of Jilin Province, No.20090741, 20090185
文摘Activin A, which was first described in 1986, has been shown to maintain hippocampal neuronal survival. Activin A increases intracellular free Ca2+ via L-type Ca2+ channels. Our previous study showed that activin A promotes neurite growth of dorsal root ganglia in embryonic chickens and inhibits nitric oxide secretion. The present study demonstrated for the first time that activin A could maintain cerebral cortex neuronal survival in vitro for a long period, and that activin A was shown to increase voltage-gated Na+ current (/Na) in Neuro-2a cells, which was recorded by patch clamp technique. The present study revealed a novel mechanism for activin A, as well as the influence of activin A on neurons by regulating expressions of vasoactive intestine peptide and inducible nitric oxide synthase.
基金Supported by the National Natural Science Foundation of China(Nos.20176030,20276041,20776088,21808144)China Postdoctoral Science Foundation(No.2016M592710)+1 种基金Fundamental Research Funds for the Central Universities(No.20822041B4013)Key Laboratory of Development and Application of Rural Renewable Energy,MOA,China(No.18H0491)
文摘There would be strong product inhibition on ethanol fermentation process if ethanol is not removed in situ from broth. PDMS membrane pervaporation coupled with fermentation is a promising process for efficient bioethanol production since ethanol inhibition is relieved or eliminated. From the perspective of process operation, membrane separation performance, ethanol fermentation performance and the subsequent processing on membrane downstream are the three key issues. This review aims at contributing a comprehensive overview on the operation performance of the integrated process. The state-of-the-art of the three key issues related to the operation performance is focused. Finally, the tentative perspective on the possible future prospects of the integrated process is briefly presented.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA17010101, XDA17010102, XDA17010103, XDA17010104 and XDA17010105)
文摘The unique geographical location and high altitude of the Tibetan Plateau can greatly influence regional weather and climate.In particular, the Asian summer monsoon(ASM) anticyclone circulation system over the Tibetan Plateau is recognized to be a significant transport pathway for water vapor and pollutants to enter the stratosphere. To improve understanding of these physical processes, a multi-location joint atmospheric experiment was performed over the Tibetan Plateau from late July to August in 2018, funded by the fiveyear(2018–2022) STEAM(stratosphere and troposphere exchange experiment during ASM) project, during which multiple platforms/instruments—including long-duration stratospheric balloons, dropsondes, unmanned aerial vehicles, special sounding systems, and ground-based and satellite-borne instruments—will be deployed. These complementary methods of data acquisition are expected to provide comprehensive atmospheric parameters(aerosol, ozone, water vapor, CO_2, CH_4, CO, temperature, pressure,turbulence, radiation, lightning and wind); the richness of this approach is expected to advance our comprehension of key mechanisms associated with thermal, dynamical, radiative, and chemical transports over the Tibetan Plateau during ASM activity.
基金supported by National Natural Science Foundation of China (No. 11505089)
文摘In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%-0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field, electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-to- argon ratio is relatively larger (R = 0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.
基金supported in part by the Major Program of the Ministry of Science and Technology of China under Grant 2019YFB2205102in part by the National Natural Science Foundation of China under Grant 61974164,62074166,61804181,62004219,62004220,62104256.
文摘With the continuous development of deep learning,Deep Convolutional Neural Network(DCNN)has attracted wide attention in the industry due to its high accuracy in image classification.Compared with other DCNN hard-ware deployment platforms,Field Programmable Gate Array(FPGA)has the advantages of being programmable,low power consumption,parallelism,and low cost.However,the enormous amount of calculation of DCNN and the limited logic capacity of FPGA restrict the energy efficiency of the DCNN accelerator.The traditional sequential sliding window method can improve the throughput of the DCNN accelerator by data multiplexing,but this method’s data multiplexing rate is low because it repeatedly reads the data between rows.This paper proposes a fast data readout strategy via the circular sliding window data reading method,it can improve the multiplexing rate of data between rows by optimizing the memory access order of input data.In addition,the multiplication bit width of the DCNN accelerator is much smaller than that of the Digital Signal Processing(DSP)on the FPGA,which means that there will be a waste of resources if a multiplication uses a single DSP.A multiplier sharing strategy is proposed,the multiplier of the accelerator is customized so that a single DSP block can complete multiple groups of 4,6,and 8-bit signed multiplication in parallel.Finally,based on two strategies of appeal,an FPGA optimized accelerator is proposed.The accelerator is customized by Verilog language and deployed on Xilinx VCU118.When the accelerator recognizes the CIRFAR-10 dataset,its energy efficiency is 39.98 GOPS/W,which provides 1.73×speedup energy efficiency over previous DCNN FPGA accelerators.When the accelerator recognizes the IMAGENET dataset,its energy efficiency is 41.12 GOPS/W,which shows 1.28×−3.14×energy efficiency compared with others.
基金financially supported by the National Science Foundation of China (Grant No. 21575029)
文摘In this paper, we designed and evaluated a duplex detection strategy for micro RNAs(mi RNAs) using universal probe-based target-triggered double hybridization and fluorescent microsphere-based assay system(x MAP array). In the absence of target mi RNA, reporter DNA cannot hybridize stably with the immobilized capture DNA due to its low melting temperature. Only after adding target mi RNA, can reporter probe hybridize with capture probe to form a stable three-component complex. This targettriggered stable hybridization makes this method possible for highly selective and sensitive detection of multiple mi RNAs. We exemplified a quantitative detection of duplex mi RNAs with a limit of detection of40 p M. The x MAP array platform holds the potential of extending this approach to simultaneous detection of up to 100 mi RNA targets. Considering the simplicity, rapidity and multiplexing, this work promised a potential detection of multiple mi RNA biomarkers for early disease diagnosis and prognosis.
文摘This paper developed a sensitive and efficient analytical method for triclocarban (TCC), triclosan (TCS) and Methyl-triclosan (MTCS) determination in environmental water, which involves enrichment by using silicon dioxide/polystyrene composite microspheres solid-phase extraction and detection with HPLC-ESI-MS. The influence of several operational parameters, including the eluant and its volume, the flow rate and acidity of water sample were investigated and optimized. Under the optimum conditions, the limits of detection were 1.0 ng/L, 2.5 and 4.5 ng/L for TCC, TCS, and MTCS, respectively. The linearity of the method was observed in the range of 5-2000 ng/L, with correlation coefficients (r2) >.99. The spiked recoveries of TCC, TCS and MTCS in water sampleswereachieved in the range of 89.5% -96.8% with RSD below 5.7%. The proposed method has been successfully applied to analyze real water samples and satisfactory results were achieved.
基金Supported by the National Natural Science Foundation of China(Nos.31872544,42076112)the Scientific Research Foundation of Yancheng Institute of Technology(Nos.XJ201725,XJ201726)。
文摘The Polian vesicle is the main accessory structure in the water vascular system of sea cucumbers.It can function to hold water vascular fluid under slight pressure and act as a hematopoiesis,excretory,and inflammatory response organ.Being the only organ to remain after evisceration,the Polian vesicle may function in the survival and regeneration of sea cucumber.We performed Tandem Mass Tag(TMT)-based proteomics to identify how proteins in the Polian vesicle of Apostichopus japonicus respond to evisceration.Among the 8453 proteins identified from vesicle samples before evisceration(PVOh)and at 6-h post-evisceration(PV6h)and 3-d post-evisceration(PV3d),we detected 222 differentially abundant proteins(DAPs).Most of the annotated DAPs were associated with cell growth and proliferation,immune response and wound healing,substance transport and metabolism,cytoskeleton/cilia/flagella,extracellular matrix,energy production and conversion,protein synthesis and modification,and signal recognition and transduction.Compared with PVOh,fewer DAPs were identified at PV6h,and more DAPs were found at PV3d,and these DAPs were widely distributed among multiple biological processes.Our results indicate that a wide range of biological processes was induced in Polian vesicles in response to evisceration.In particular,Polian vesicles may play important roles in the re storation of coelomocyte s,immune defense,and wound healing in sea cucumber.We propose that the Polian vesicle may be involved in visceral regeneration through nutrition and energy supply and by promoting dedifferentiation and migration.Together,these results provided new insights into the function of the Polian vesicle in A.japonicus post-evisceration.
基金supported by the National Natural Science Foundation of China (Grant No. 41105015)
文摘The radiation budget at the top of the atmosphere plays a critical role in climate research. Compared to the broadband flux, the spectrally resolved outgoing longwave radiation or flux (OLR), with rich atmospheric information in different bands, has obvious advantages in the evaluation of GCMs. Unlike methods that need auxiliary measurements and information, here we take atmospheric infrared sounder (AIRS) observations as an example to build a self-consistent algorithm by an angular distribution model (ADM), based solely on radiance observations, to estimate clear-sky spectrally resolved fluxes over tropical oceans. As the key step for such an ADM, scene type estimations are obtained from radiance and brightness temperature in selected AIRS channels. Then, broadband OLR as well as synthetic spectral fluxes are derived by the spectral ADM and validated using both synthetic spectra and CERES (Clouds and the Earth's Radiant Energy System) observations. In most situations, the mean OLR differences between the spectral ADM products and the CERES observations are within -4-2 W m-2, which is less than 1% of the typical mean clear-sky OLR over tropical oceans. The whole algorithm described in this study can be easily extended to other similar hyperspectral radiance measurements.
基金We are grateful for financial supports from National Natural Science Foundation of China(62004166)Natural Science Foundation of Ningbo(202003N4062)+2 种基金National Postdoctoral Program for Innovative Talents(BX20200279)Natural Science Basic Research Program of Shaanxi Province(2020JQ-199)Fundamental Research Funds for the Central Universities(31020190QD027).
文摘Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis.A number of theories and methods have been successful in describing the optical response of a stratified optical cavity,while the inverse problem,especially the inverse design of a displacement sensitive cavity,remains a significant challenge due to the cost of computation and comprehensive performance requirements.This paper reports a novel inverse design methodology combining the characteristic matrix method,mixed-discrete variables optimization algorithm,and Monte Carlo method-based tolerance analysis.The material characteristics are indexed to enable the mixed-discrete variables optimization,which yields considerable speed and efficiency improvements.This method allows arbitrary response adjustment with technical feasibility and gives a glimpse into the analytical characterization of the optical response.Two entirely different light-displacement responses,including an asymmetric sawtooth-like response and a highly symmetric response,are dug out and experimentally achieved,which fully confirms the validity of the method.The compact Fabry-Perot cavities have a good balance between performance and feasibility,making them promising candidates for displacement transducers.More importantly,the proposed inverse design paves the way for a universal design of optical cavities,or even nanophotonic devices.
基金Project supported by the National Key Research and Development Plan of the Ministry of Science of Technology of China (Grand Nos.2019YFB 2205100 and 2019YFB2205102)the National Natural Science Foundation of China (Grant Nos.61974164,62074166,61804181,62004219,and 62004220)the Science Support Program of the National University of Defense and Technology (Grand No.ZK20-06)。
文摘Memristive stateful logic is one of the most promising candidates to implement an in-memory computing system that computes within the storage unit.It can eliminate the costs for the data movement in the traditional von Neumann system.However,the instability in the memristors is inevitable due to the limitation of the current fabrication technology,which incurs a great challenge for the reliability of the memristive stateful logic.In this paper,the implication of device instability on the reliability of the logic event is simulated.The mathematical relationship between logic reliability and redundancy has been deduced.By combining the mathematical relationship with the vector-matrix multiplication in a memristive crossbar array,the logic error correction scheme with high throughput has been proposed.Moreover,a universal design paradigm has been put forward for complex logic.And the circuit schematic and the flow of the scheme have been raised.Finally,a 1-bit full adder(FA)based on the NOR logic and NOT logic is simulated and the mathematical evaluation is performed.It demonstrates the scheme can improve the reliability of the logic significantly.And compared with other four error corrections,the scheme which can be suitable for all kinds of R–R logics and V–R logics has the best universality and throughput.Compared with the other two approaches which also need additional complementary metal–oxide semiconductor(CMOS)circuits,it needs fewer transistors and cycles for the error correction.
基金financially supported by National Natural Science Foundation of China (Grant No. 11505089)the Doctoral Scientific Research Foundation of Liaoning Province (Grant No. 20170520381)
文摘On the basis of the fluid theory and the drift-diffusion approximation, a numerical model for dual-frequency atmospheric pressure helium discharge is established, in order to investigate the effects of the high frequency source (HF) on the characteristics of dual-frequency atmospheric pressure helium discharge. The numerical results showed that the electron heating rate increases with enhancing HF frequency, as well as the particles densities, electron dissipation rate, current density, net electron generation and bulk plasma region. Moreover, it is also observed that the efficient electron heating region moves when the HF frequency has been changed. The plasma parameters are not linear change with the HF frequency linearly increasing.
基金supported by the National Key Research and Development Program of China(Nos.2022YFB3605900 and 2022YFB3605901)。
文摘The existing single-crystal slicing techniques result in significant material wastage and elevate the production cost o premium-quality thin slices of crystals.Here we report(for the first time,to our knowledge)an approach for vertical slicin of large-size single-crystal gain materials by ultrafast laser.By employing aberration correction techniques,the optimi zation of the optical field distribution within the high-refractive-index crystal enables the achievement of a continuou laser-modified layer with a thickness of less than 10μm,oriented perpendicular to the direction of the laser direction The compressed focal spot facilitates crack initiation,enabling propagation under external forces,ultimately achievin the successful slicing of aΦ12 mm crystal.The surface roughness of the sliced Yb:YAG is less than 2.5μm.The result illustrate the potential of low-loss slicing strategy for single-crystal fabrication and pave the way for the future develop ment of thin disk lasers.
基金the National Key Research and Development Program of China(No.2023YFD2200903)the World Bank Loans Qiandao Lake and Xin’an River Basin Water Resources and Ecological Protection Projects in Zhejiang(CLJY3),China.
文摘Objectives:The chemical constituents of Poria cocos grown with different substrates vary significantly;thus,identifying and comparing their biomarkers are important.Materials and Methods:Herein,the chemical constituents of Poria cocos obtained with five different substrates were assessed using gas chromatography–ion mobility spectrometry(GC-IMS),high-performance liquid chromatography and multivariate statistical analysis.Results:The content of moisture,ash,alcohol-soluble matter,and heavy metals,except for those of the miscellaneous wood Poria cocos,conform to the specifications defined in the Chinese Pharmacopoeia(Edition 2020),and the polysaccharide contents are all greater than 57%.Conclusions:Based on GC-IMS and the established fingerprints,87 compounds were detected,70 of which were identified in each group.Multivariate statistical analysis revealed seven compounds(two esters,three alcohols,and two aldehydes),which could be considered as potential marker compounds for discrimination.