This paper presents a model specifying requirements of real-time systems. Different from existing researches, this model mainly uses rules and templates to represent hierarchical FSMs (Finite State Machine). In this m...This paper presents a model specifying requirements of real-time systems. Different from existing researches, this model mainly uses rules and templates to represent hierarchical FSMs (Finite State Machine). In this model, one rule corresponds to one state transition of FSM and one template corresponds to one FSM. Rules and information with respect to a FSM can be written in a template. So templates include not only state diagrams, but also information that can not be described by FSM, such as performance requirements. The specification using this model consists of a collection of templates and it is easy for users to understand and to review. After introduced the related researches and principles of the model, this paper specifies requirements of a real-time system with this model, and discusses characters of this model in the end.展开更多
It is of great significance to study the relationship between the excited state intramolecular proton transfer(ESIPT)properties and antioxidant activities of compounds in the field of life sciences.In this work,two no...It is of great significance to study the relationship between the excited state intramolecular proton transfer(ESIPT)properties and antioxidant activities of compounds in the field of life sciences.In this work,two novel compounds 5HF-OMe and 5HF-NH2 are designed through introducing a methoxy-and amino-group into the structure of 5-hydroxyflavone(5HF)respectively.The relationship between the ESIPT reaction and antioxidant activities of the three compounds is studied via the density functional theory(DFT)and time-dependent DFT(TD-DFT)methods.The calculated potential energy curves suggest that the rate of ESIPT reaction will gradually slow down from 5HF to 5HF-OMe and 5HF-NH2.In addition,the antioxidant activities of the three compounds gradually enhance from 5HF to 5HF-OMe and 5HF-NH2,which can be seen from the calculated energy gaps and ionization potential values.Interestingly,the above results imply that the rate of ESIPT reaction has a negative relationship with the antioxidant activities of the compounds,i.e.,the slower rate of ESIPT reaction will reflect the higher antioxidant activity of the compound,which will provide valuable reference for detecting the antioxidant activity of compound via the photophysical method.展开更多
The influences of the substituent base position on the excited state intramolecular proton transfer fluorescence properties were explored in 2-(2'-hydroxyphenyl)imidazo[1,2-a]-pyridine(HPIP)and HPIP's derivati...The influences of the substituent base position on the excited state intramolecular proton transfer fluorescence properties were explored in 2-(2'-hydroxyphenyl)imidazo[1,2-a]-pyridine(HPIP)and HPIP's derivatives(5'Br-HPIP and 6'BrHPIP).And the density functional theory(DFT)and time-dependent DFT(TD-DFT)methods were used to calculate the molecule structures.The calculated results showed that the influence of 5'Br-HPIP on the fluorescence intensity is stronger than that of 6'Br-HPIP.The fluorescence emission peak of 5'Br-HPIP occurred a blue shift compared with HPIP,and 6'BrHPIP exhibited an opposite red shift.The change of the fluorescence emission peak was attributed to the decrease of the energy gap from 6'Br-HPIP to 5'Br-HPIP.Our work on the substituent position influence could be helpful to design and develop new materials.展开更多
Immune checkpoint inhibitors(ICIs)are used to relieve and refuel anti-tumor immunity by blocking the interaction,transcription,and translation of co-inhibitory immune checkpoints or degrading co-inhibitory immune chec...Immune checkpoint inhibitors(ICIs)are used to relieve and refuel anti-tumor immunity by blocking the interaction,transcription,and translation of co-inhibitory immune checkpoints or degrading co-inhibitory immune checkpoints.Thousands of small molecule drugs or biological materials,especially antibody-based ICIs,are actively being studied and antibodies are currently widely used.Limitations,such as anti-tumor efficacy,poor membrane permeability,and unneglected tolerance issues of antibody-based ICIs,remain evident but are thought to be overcome by small molecule drugs.Recent structural studies have broadened the scope of candidate immune checkpoint molecules,as well as innovative chemical inhibitors.By way of comparison,small molecule drug-based ICIs represent superior oral bioavailability and favorable pharmacokinetic features.Several ongoing clinical trials are exploring the synergetic effect of ICIs and other therapeutic strategies based on multiple ICI functions,including immune regulation,anti-angiogenesis,and cell cycle regulation.In this review we summarized the current progression of small molecule ICIs and the mechanism underlying immune checkpoint proteins,which will lay the foundation for further exploration.展开更多
Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,th...Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,the classic morphological taxonomy of this family needs to be revised.In recent years,many genera of Scenedesmaceae have been established via the use of molecular methods.The phylogenetic relationships within Scenedesmaceae were analyzed using different molecular markers and morphological data,and the new freshwater genus Coccoidesmus Wang,Hou et Liu gen.nov.was described.Two new species in this genus were also described.Phylogenetic analysis based on tufA genes revealed that the new genus formed an independent clade closely related to Comasiella.However,these two genera are characterized by significant morphological differences in colony arrangement and cell shape.The chloroplast genome of the type species was assembled and annotated,and analyses of genome structure and sequences were conducted.More genome data could help clarify the phylogenetic relationships within this family.展开更多
BACKGROUND The most common causes of scrotal enlargement in patients include primary tumor of the scrotum,inflammation,hydrocele of the tunica vaginalis,and indirect inguinal hernia;scrotal enlargement caused by exter...BACKGROUND The most common causes of scrotal enlargement in patients include primary tumor of the scrotum,inflammation,hydrocele of the tunica vaginalis,and indirect inguinal hernia;scrotal enlargement caused by external tumors of the scrotum is rare.The patient had both a greater omentum tumor and an inguinal hernia,and the tumor protruded into the scrotum through the hernia sac,which is even rarer.Moreover,omental tumors are mostly metastatic,and primary omental fibroma is rare.CASE SUMMARY Here,we report a rare case of a 25-year-old young man with scrotal enlargement and pain for 3 months.Preoperative examination and multidisciplinary discu-ssions considered intra-abdominal tumor displacement and inguinal hernia,and intraoperative exploration confirmed that the greater omentum tumor protruded into the scrotum.Therefore,tumor resection and tension-free inguinal hernia repair were performed.The final diagnosis was benign fibroma of the greater omentum accompanied by an indirect inguinal hernia.CONCLUSION This unusual presentation of a common inguinal hernia disease illustrates the necessity of performing detailed history taking,physical examination,and imaging before surgery.展开更多
In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are...In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.展开更多
Metal-free organic emitters,characterized by their thermally activated delayed fluorescence(TADF)properties,offer considerable promise for the creation of highly efficient organic light-emitting diodes(OLEDs).Recently...Metal-free organic emitters,characterized by their thermally activated delayed fluorescence(TADF)properties,offer considerable promise for the creation of highly efficient organic light-emitting diodes(OLEDs).Recently,Shao et al.presented a novel excited state intramolecular proton transfer(ESIPT)system BrA-HBI,demonstrating an emission quantum yield of up to 50%[Adv.Funct.Mater.32,2201256(2022)].However,many open issues cannot be answered solely by experimental means only and require detailed theoretical investigations.For instance,what causes the activation of TADF from the Keto^(*) tautomer and leads to fluorescence quenching in the Enol^(*)form?Herein,we provide a theoretical investigation on the TADF mechanism of the BrA-HBI molecule by optimally tuned range-separated functionals.Our findings reveal that ESIPT occurs in the BrA-HBI molecule.Moreover,we have disclosed the reason for the fluorescence quenching of the Enol^(*)form and determined that the T_(2)state plays a dominant role in the TADF phenomenon.In addition,double hybrid density functionals method was utilized to verify the reliability of optimally tuned range separation functionals on the calculation of the TADF mechanism in BrA-HBI.These findings not only provide a theoretical reference for development of highly efficient organic light-emitting diodes,but also demonstrate the effectiveness of the optimally tuned range-separated functionals in predicting the luminescence properties of TADF molecules.展开更多
Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive anal...Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive analysis of the actual production process of the deep condensate gas well A1 in a certain oilfield in China.Combining phase behavior analysis and CMG software simulations,the study systematically investigates phase transitions,viscosity,and density changes in the gas and liquid phases under different pressure conditions,with a reservoir temperature of 165°C.The research covers three crucial depletion stages of the reservoir:single-phase flow,two-phase transition,and two-phase flow.The findings indicate that retrograde condensation occurs when the pressure falls below the dew point pressure,reachingmaximum condensate liquid production at around 25MPa.As pressure decreases,gas phase density and viscosity gradually decrease,while liquid phase density and viscosity show an increasing trend.In the initial single-phase flow stage,maintaining a consistent gas-oil ratio is observed when both bottom-hole and reservoir pressures are higher than the dew point pressure.However,a sudden drop in bottom-hole pressure below the dew point triggers the production of condensate oil,significantly reducing subsequent gas and oil production.In the transitional two-phase flow stage,as the bottom-hole pressure further decreases,the reservoir exhibits a complex flow regime with coexisting areas of gas and liquid.In the subsequent two-phase flow stage,when both bottom-hole and reservoir pressures are below the dew point pressure,a significant increase in the gas-oil ratio is observed.The reservoir manifests a two-phase flow regime,devoid of single-phase gas flow areas.For lowpressure conditions in deep condensate gas reservoirs,considerations include gas injection,gas lift,and cyclic gas injection and production in surrounding wells.Additionally,techniques such as hot nitrogen or CO_(2) injection can be employed to mitigate retrograde condensation damage.The implications of this study are crucial for developing targeted development strategies and enhancing the overall development of deep condensate gas reservoirs.展开更多
Innovations of mining technologies were proposed by beneficial utilizations of unfavorable factors such as high geostress,high geotemperature and high mining depth to achieve green mining as mining depth increases ine...Innovations of mining technologies were proposed by beneficial utilizations of unfavorable factors such as high geostress,high geotemperature and high mining depth to achieve green mining as mining depth increases inevitably.Cuttability of deep hard rock was investigated by experimental and regressed analyses to find the reasonable stress adjustment method to improve non-explosive mechanized fragmentation for hard ore-rock.A non-explosive mechanized and intellectualized mining method was proposed to continuously and precisely exploit phosphate underground,which promoted the high-recovery,low-waste and high-efficiency exploitation of phosphate with recovery rate over 90%,dilution rate near 5%and cutting efficiency about 107.7 t/h.A circular economy model and the backfill system were proposed to conduct resource utilizations of solid waste,by which the utilization amount of waste increased year after year.In 2018,the utilization amounts of phosphogypsum,yellow phosphorus slag and waste rock increased to 1853.6×10^3 t/a,291.1×10^3 t/a and 1493.8×10^3 t/a,respectively.展开更多
基金Supported by the National Natural Science F oundation of China(6 98730 35 ) and the Research Fund for the Doctoral Program of Hi
文摘This paper presents a model specifying requirements of real-time systems. Different from existing researches, this model mainly uses rules and templates to represent hierarchical FSMs (Finite State Machine). In this model, one rule corresponds to one state transition of FSM and one template corresponds to one FSM. Rules and information with respect to a FSM can be written in a template. So templates include not only state diagrams, but also information that can not be described by FSM, such as performance requirements. The specification using this model consists of a collection of templates and it is easy for users to understand and to review. After introduced the related researches and principles of the model, this paper specifies requirements of a real-time system with this model, and discusses characters of this model in the end.
基金Project supported by the National Basic Research Program of China(Grant No.2019YFA0307701)the National Natural Science Foundation of China(Grant No.11874180)the Science and Technology Development Project of Jilin Province of China(Grant No.20190103101JH).
文摘It is of great significance to study the relationship between the excited state intramolecular proton transfer(ESIPT)properties and antioxidant activities of compounds in the field of life sciences.In this work,two novel compounds 5HF-OMe and 5HF-NH2 are designed through introducing a methoxy-and amino-group into the structure of 5-hydroxyflavone(5HF)respectively.The relationship between the ESIPT reaction and antioxidant activities of the three compounds is studied via the density functional theory(DFT)and time-dependent DFT(TD-DFT)methods.The calculated potential energy curves suggest that the rate of ESIPT reaction will gradually slow down from 5HF to 5HF-OMe and 5HF-NH2.In addition,the antioxidant activities of the three compounds gradually enhance from 5HF to 5HF-OMe and 5HF-NH2,which can be seen from the calculated energy gaps and ionization potential values.Interestingly,the above results imply that the rate of ESIPT reaction has a negative relationship with the antioxidant activities of the compounds,i.e.,the slower rate of ESIPT reaction will reflect the higher antioxidant activity of the compound,which will provide valuable reference for detecting the antioxidant activity of compound via the photophysical method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874180 and 11704146)the Program of Science and Technology Development Plan of Jilin Province,China(Grant Nos.20190201138TC and 20190103101JH)。
文摘The influences of the substituent base position on the excited state intramolecular proton transfer fluorescence properties were explored in 2-(2'-hydroxyphenyl)imidazo[1,2-a]-pyridine(HPIP)and HPIP's derivatives(5'Br-HPIP and 6'BrHPIP).And the density functional theory(DFT)and time-dependent DFT(TD-DFT)methods were used to calculate the molecule structures.The calculated results showed that the influence of 5'Br-HPIP on the fluorescence intensity is stronger than that of 6'Br-HPIP.The fluorescence emission peak of 5'Br-HPIP occurred a blue shift compared with HPIP,and 6'BrHPIP exhibited an opposite red shift.The change of the fluorescence emission peak was attributed to the decrease of the energy gap from 6'Br-HPIP to 5'Br-HPIP.Our work on the substituent position influence could be helpful to design and develop new materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.82203539 and 92259102)Provincial Cooperation Project of Science and Technology Department of Sichuan Province(Grant No.2023YFSY0043)the National Key Research and Development Program of China(Grant No.2023YFC3402100).
文摘Immune checkpoint inhibitors(ICIs)are used to relieve and refuel anti-tumor immunity by blocking the interaction,transcription,and translation of co-inhibitory immune checkpoints or degrading co-inhibitory immune checkpoints.Thousands of small molecule drugs or biological materials,especially antibody-based ICIs,are actively being studied and antibodies are currently widely used.Limitations,such as anti-tumor efficacy,poor membrane permeability,and unneglected tolerance issues of antibody-based ICIs,remain evident but are thought to be overcome by small molecule drugs.Recent structural studies have broadened the scope of candidate immune checkpoint molecules,as well as innovative chemical inhibitors.By way of comparison,small molecule drug-based ICIs represent superior oral bioavailability and favorable pharmacokinetic features.Several ongoing clinical trials are exploring the synergetic effect of ICIs and other therapeutic strategies based on multiple ICI functions,including immune regulation,anti-angiogenesis,and cell cycle regulation.In this review we summarized the current progression of small molecule ICIs and the mechanism underlying immune checkpoint proteins,which will lay the foundation for further exploration.
基金Supported by the National Natural Science Foundation of China(Nos.32000167,32370219)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2020L0524)+1 种基金the Fundamental Research Program of Shanxi Province(No.20210302124302)the Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin,Taiyuan Normal University。
文摘Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,the classic morphological taxonomy of this family needs to be revised.In recent years,many genera of Scenedesmaceae have been established via the use of molecular methods.The phylogenetic relationships within Scenedesmaceae were analyzed using different molecular markers and morphological data,and the new freshwater genus Coccoidesmus Wang,Hou et Liu gen.nov.was described.Two new species in this genus were also described.Phylogenetic analysis based on tufA genes revealed that the new genus formed an independent clade closely related to Comasiella.However,these two genera are characterized by significant morphological differences in colony arrangement and cell shape.The chloroplast genome of the type species was assembled and annotated,and analyses of genome structure and sequences were conducted.More genome data could help clarify the phylogenetic relationships within this family.
文摘BACKGROUND The most common causes of scrotal enlargement in patients include primary tumor of the scrotum,inflammation,hydrocele of the tunica vaginalis,and indirect inguinal hernia;scrotal enlargement caused by external tumors of the scrotum is rare.The patient had both a greater omentum tumor and an inguinal hernia,and the tumor protruded into the scrotum through the hernia sac,which is even rarer.Moreover,omental tumors are mostly metastatic,and primary omental fibroma is rare.CASE SUMMARY Here,we report a rare case of a 25-year-old young man with scrotal enlargement and pain for 3 months.Preoperative examination and multidisciplinary discu-ssions considered intra-abdominal tumor displacement and inguinal hernia,and intraoperative exploration confirmed that the greater omentum tumor protruded into the scrotum.Therefore,tumor resection and tension-free inguinal hernia repair were performed.The final diagnosis was benign fibroma of the greater omentum accompanied by an indirect inguinal hernia.CONCLUSION This unusual presentation of a common inguinal hernia disease illustrates the necessity of performing detailed history taking,physical examination,and imaging before surgery.
基金supported by the NSFC (12071438)supported by the NSFC (12201232)
文摘In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.
基金supported by the National Natural Science Foundation of China(Grant No.12174149)。
文摘Metal-free organic emitters,characterized by their thermally activated delayed fluorescence(TADF)properties,offer considerable promise for the creation of highly efficient organic light-emitting diodes(OLEDs).Recently,Shao et al.presented a novel excited state intramolecular proton transfer(ESIPT)system BrA-HBI,demonstrating an emission quantum yield of up to 50%[Adv.Funct.Mater.32,2201256(2022)].However,many open issues cannot be answered solely by experimental means only and require detailed theoretical investigations.For instance,what causes the activation of TADF from the Keto^(*) tautomer and leads to fluorescence quenching in the Enol^(*)form?Herein,we provide a theoretical investigation on the TADF mechanism of the BrA-HBI molecule by optimally tuned range-separated functionals.Our findings reveal that ESIPT occurs in the BrA-HBI molecule.Moreover,we have disclosed the reason for the fluorescence quenching of the Enol^(*)form and determined that the T_(2)state plays a dominant role in the TADF phenomenon.In addition,double hybrid density functionals method was utilized to verify the reliability of optimally tuned range separation functionals on the calculation of the TADF mechanism in BrA-HBI.These findings not only provide a theoretical reference for development of highly efficient organic light-emitting diodes,but also demonstrate the effectiveness of the optimally tuned range-separated functionals in predicting the luminescence properties of TADF molecules.
基金funding from the Key Research Project of Tarim Oilfield Company of Petrochina(671023060003)for this study.
文摘Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive analysis of the actual production process of the deep condensate gas well A1 in a certain oilfield in China.Combining phase behavior analysis and CMG software simulations,the study systematically investigates phase transitions,viscosity,and density changes in the gas and liquid phases under different pressure conditions,with a reservoir temperature of 165°C.The research covers three crucial depletion stages of the reservoir:single-phase flow,two-phase transition,and two-phase flow.The findings indicate that retrograde condensation occurs when the pressure falls below the dew point pressure,reachingmaximum condensate liquid production at around 25MPa.As pressure decreases,gas phase density and viscosity gradually decrease,while liquid phase density and viscosity show an increasing trend.In the initial single-phase flow stage,maintaining a consistent gas-oil ratio is observed when both bottom-hole and reservoir pressures are higher than the dew point pressure.However,a sudden drop in bottom-hole pressure below the dew point triggers the production of condensate oil,significantly reducing subsequent gas and oil production.In the transitional two-phase flow stage,as the bottom-hole pressure further decreases,the reservoir exhibits a complex flow regime with coexisting areas of gas and liquid.In the subsequent two-phase flow stage,when both bottom-hole and reservoir pressures are below the dew point pressure,a significant increase in the gas-oil ratio is observed.The reservoir manifests a two-phase flow regime,devoid of single-phase gas flow areas.For lowpressure conditions in deep condensate gas reservoirs,considerations include gas injection,gas lift,and cyclic gas injection and production in surrounding wells.Additionally,techniques such as hot nitrogen or CO_(2) injection can be employed to mitigate retrograde condensation damage.The implications of this study are crucial for developing targeted development strategies and enhancing the overall development of deep condensate gas reservoirs.
基金Projects(41630642,51904335,51904333)supported by the National Natural Science Foundation of China
文摘Innovations of mining technologies were proposed by beneficial utilizations of unfavorable factors such as high geostress,high geotemperature and high mining depth to achieve green mining as mining depth increases inevitably.Cuttability of deep hard rock was investigated by experimental and regressed analyses to find the reasonable stress adjustment method to improve non-explosive mechanized fragmentation for hard ore-rock.A non-explosive mechanized and intellectualized mining method was proposed to continuously and precisely exploit phosphate underground,which promoted the high-recovery,low-waste and high-efficiency exploitation of phosphate with recovery rate over 90%,dilution rate near 5%and cutting efficiency about 107.7 t/h.A circular economy model and the backfill system were proposed to conduct resource utilizations of solid waste,by which the utilization amount of waste increased year after year.In 2018,the utilization amounts of phosphogypsum,yellow phosphorus slag and waste rock increased to 1853.6×10^3 t/a,291.1×10^3 t/a and 1493.8×10^3 t/a,respectively.