AIM: To explore the mechanisms of uncut Roux-en-Y gastrojejunostomy, which is used to decrease the occurrence of Roux stasis syndrome.METHODS: The changes of myoelectric activity, mechanic motility and interstitial ce...AIM: To explore the mechanisms of uncut Roux-en-Y gastrojejunostomy, which is used to decrease the occurrence of Roux stasis syndrome.METHODS: The changes of myoelectric activity, mechanic motility and interstitial cells of Cajal (ICC) of the Roux limb after cut or uncut Roux-en-Y gastrojejunostomy were observed. RESULTS: When compared with the cut group, the amplitude (1.15 ± 0.15 mV vs 0.48 ± 0.06 mV, P < 0.05) and frequency (14.4 ± 1.9 cpm vs 9.5 ± 1.1 cpm, P < 0.01) of slow waves and the incidence (98.2% ± 10.4% vs 56.6% ± 6.4%, P < 0.05) and amplitude (0.58 ± 0.08 mV vs 0.23 ± 0.06 mV, P < 0.01) of spike potential of the Roux limb in the uncut group were significantly higher. The migrating myoelectric complexes (MMC) phase Ⅲ duration in the uncut group was significantly prolonged (6.5 ± 1.1 min vs 4.4 ± 0.8 min, P < 0.05), while the MMC cycle obviously shortened (42.5 ± 6.8 vs 55.3 ± 8.2 min, P < 0.05). Both gastric emptying rate (65.5% ± 7.9% vs 49.3% ± 6.8%, P < 0.01) and intestinal impelling ratio (53.4% ± 7.4% vs 32.2% ± 5.4%, P < 0.01) in the uncut group were significantly increased. The contractile force index of the isolated jejunal segment in the uncut group was significantly higher (36.8 ± 5.1 vs 15.3 ± 2.2, P < 0.01), and the expression of c-kit mRNA was significantly increased in the uncut group (0.82 ± 0.11 vs 0.35 ± 0.06, P < 0.01). CONCLUSION: Uncut Roux-en-Y gastrojejunostomymay lessen the effects of operation on myoelectric activity such as slow waves, spike potential, and MMC, decrease the impairment of gastrointestinal motility, and remarkably increase the expression of c-kit mRNA.展开更多
Recent studies have indicated that suppressing oxidative stress and ferroptosis can considerably improve the prognosis of intracerebral hemorrhage(ICH).Withaferin A(WFA),a natural compound,exhibits a positive effect o...Recent studies have indicated that suppressing oxidative stress and ferroptosis can considerably improve the prognosis of intracerebral hemorrhage(ICH).Withaferin A(WFA),a natural compound,exhibits a positive effect on a number of neurological diseases.However,the effects of WFA on oxidative stress and ferroptosis-mediated signaling pathways to ICH remain unknown.In this study,we investigated the neuroprotective effects and underlying mechanism for WFA in the regulation of ICH-induced oxidative stress and ferroptosis.We established a mouse model of ICH by injection of autologous tail artery blood into the caudate nucleus and an in vitro cell model of hemin-induced ICH.WFA was injected intracerebroventricularly at 0.1,1 or 5μg/kg once daily for 7 days,starting immediately after ICH operation.WFA markedly reduced brain tissue injury and iron deposition and improved neurological function in a dose-dependent manner 7 days after cerebral hemorrhage.Through in vitro experiments,cell viability test showed that WFA protected SH-SY5Y neuronal cells against hemin-induced cell injury.Enzyme-linked immunosorbent assays in vitro and in vivo showed that WFA markedly decreased the level of malondialdehyde,an oxidative stress marker,and increased the activities of anti-oxidative stress markers superoxide dismutase and glutathione peroxidase after ICH.Western blot assay,quantitative polymerase chain reaction and immunofluorescence results demonstrated that WFA activated the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)signaling axis,promoted translocation of Nrf2 from the cytoplasm to nucleus,and increased HO-1 expression.Silencing Nrf2 with siRNA completely reversed HO-1 expression,oxidative stress and protective effects of WFA.Furthermore,WFA reduced hemin-induced ferroptosis.However,after treatment with an HO-1 inhibitor,the neuroprotective effects of WFA against hemin-induced ferroptosis were weakened.MTT test results showed that WFA combined with ferrostatin-1 reduced hemin-induced SH-SY5Y neuronal cell injury.Our findings reveal that WFA treatment alleviated ICH injury-induced ferroptosis and oxidative stress through activating the Nrf2/HO-1 pathway,which may highlight a potential role of WFA for the treatment of ICH.展开更多
文摘AIM: To explore the mechanisms of uncut Roux-en-Y gastrojejunostomy, which is used to decrease the occurrence of Roux stasis syndrome.METHODS: The changes of myoelectric activity, mechanic motility and interstitial cells of Cajal (ICC) of the Roux limb after cut or uncut Roux-en-Y gastrojejunostomy were observed. RESULTS: When compared with the cut group, the amplitude (1.15 ± 0.15 mV vs 0.48 ± 0.06 mV, P < 0.05) and frequency (14.4 ± 1.9 cpm vs 9.5 ± 1.1 cpm, P < 0.01) of slow waves and the incidence (98.2% ± 10.4% vs 56.6% ± 6.4%, P < 0.05) and amplitude (0.58 ± 0.08 mV vs 0.23 ± 0.06 mV, P < 0.01) of spike potential of the Roux limb in the uncut group were significantly higher. The migrating myoelectric complexes (MMC) phase Ⅲ duration in the uncut group was significantly prolonged (6.5 ± 1.1 min vs 4.4 ± 0.8 min, P < 0.05), while the MMC cycle obviously shortened (42.5 ± 6.8 vs 55.3 ± 8.2 min, P < 0.05). Both gastric emptying rate (65.5% ± 7.9% vs 49.3% ± 6.8%, P < 0.01) and intestinal impelling ratio (53.4% ± 7.4% vs 32.2% ± 5.4%, P < 0.01) in the uncut group were significantly increased. The contractile force index of the isolated jejunal segment in the uncut group was significantly higher (36.8 ± 5.1 vs 15.3 ± 2.2, P < 0.01), and the expression of c-kit mRNA was significantly increased in the uncut group (0.82 ± 0.11 vs 0.35 ± 0.06, P < 0.01). CONCLUSION: Uncut Roux-en-Y gastrojejunostomymay lessen the effects of operation on myoelectric activity such as slow waves, spike potential, and MMC, decrease the impairment of gastrointestinal motility, and remarkably increase the expression of c-kit mRNA.
基金supported by the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2020GXNSFAA259036(to RJL)the Guangxi Science and Technology Project,No.Guike AD17129015(to QHL)+1 种基金Guangxi Research and Innovation Base for Basic and Clinical Application of Nerve Injury and Repair Project,No.Guike ZY21195042(to QHL)the Innovation Projects of Guangxi Graduate Education,Nos.YCSW2021246(to ZXZ),YCSW2021254(to WJX).
文摘Recent studies have indicated that suppressing oxidative stress and ferroptosis can considerably improve the prognosis of intracerebral hemorrhage(ICH).Withaferin A(WFA),a natural compound,exhibits a positive effect on a number of neurological diseases.However,the effects of WFA on oxidative stress and ferroptosis-mediated signaling pathways to ICH remain unknown.In this study,we investigated the neuroprotective effects and underlying mechanism for WFA in the regulation of ICH-induced oxidative stress and ferroptosis.We established a mouse model of ICH by injection of autologous tail artery blood into the caudate nucleus and an in vitro cell model of hemin-induced ICH.WFA was injected intracerebroventricularly at 0.1,1 or 5μg/kg once daily for 7 days,starting immediately after ICH operation.WFA markedly reduced brain tissue injury and iron deposition and improved neurological function in a dose-dependent manner 7 days after cerebral hemorrhage.Through in vitro experiments,cell viability test showed that WFA protected SH-SY5Y neuronal cells against hemin-induced cell injury.Enzyme-linked immunosorbent assays in vitro and in vivo showed that WFA markedly decreased the level of malondialdehyde,an oxidative stress marker,and increased the activities of anti-oxidative stress markers superoxide dismutase and glutathione peroxidase after ICH.Western blot assay,quantitative polymerase chain reaction and immunofluorescence results demonstrated that WFA activated the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)signaling axis,promoted translocation of Nrf2 from the cytoplasm to nucleus,and increased HO-1 expression.Silencing Nrf2 with siRNA completely reversed HO-1 expression,oxidative stress and protective effects of WFA.Furthermore,WFA reduced hemin-induced ferroptosis.However,after treatment with an HO-1 inhibitor,the neuroprotective effects of WFA against hemin-induced ferroptosis were weakened.MTT test results showed that WFA combined with ferrostatin-1 reduced hemin-induced SH-SY5Y neuronal cell injury.Our findings reveal that WFA treatment alleviated ICH injury-induced ferroptosis and oxidative stress through activating the Nrf2/HO-1 pathway,which may highlight a potential role of WFA for the treatment of ICH.