Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derive...Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.展开更多
The solubility of ammonium tungstate in a special hydrothermal condition is exploited to synthesize uniform microspheres of Ce-Cu-W-O oxides.Compared to their W-undoped counterparts,they possess more Ce^3+ and oxygen ...The solubility of ammonium tungstate in a special hydrothermal condition is exploited to synthesize uniform microspheres of Ce-Cu-W-O oxides.Compared to their W-undoped counterparts,they possess more Ce^3+ and oxygen vacancies,thereby promoting oxygen mobility.The formed rich WO3 surface can effectively provide acid sites,which is helpful for adsorption of vinyl chloride and interrupting the C-Cl bond.In addition,the presence of WO3 induces the formation of finer CuO nanoparticles with respect to the traditional coprecipitation method,thereby resulting in a better reducibility.Benefiting from both the enhanced acidity and reducibility,the Ce-Cu-W-O microspheres deliver excellent low-temperature vinyl chloride oxidation activity(a reaction rate of 2.01×10^-7 mol/(gcat·s)at 250℃)and high HCl selectivity.Moreover,subtle deactivation occurs after the three cycling activity tests,and a stable vinyl chloride conversion as well as mineralization are observed during the 72-h durability test at 300℃,which demonstrates good thermal stability.Our strategy can provide new insights into the design and synthesis of metal oxides for catalytic oxidation of chlorinated volatile organic compounds.展开更多
Summary of main observation and conclusion A series of electrospun LaCoO3 perovskites derived from CoX2 (X =CH3COO-,NO3-) were prepared and investigated for total propane oxidation.It is shown that pure rhombohedral p...Summary of main observation and conclusion A series of electrospun LaCoO3 perovskites derived from CoX2 (X =CH3COO-,NO3-) were prepared and investigated for total propane oxidation.It is shown that pure rhombohedral perovskite LaCoO3 from Co(CH3COO)2 can be obtained at a relatively low temperature,400 ℃,benefitting from the complexation effect of CH3COO-.On the other hand,CH3COO-can accelerate the complete decomposition of polymer.The low-temperature process can protect LaCoO3 nanoparticles from growing up.展开更多
文摘Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.
文摘The solubility of ammonium tungstate in a special hydrothermal condition is exploited to synthesize uniform microspheres of Ce-Cu-W-O oxides.Compared to their W-undoped counterparts,they possess more Ce^3+ and oxygen vacancies,thereby promoting oxygen mobility.The formed rich WO3 surface can effectively provide acid sites,which is helpful for adsorption of vinyl chloride and interrupting the C-Cl bond.In addition,the presence of WO3 induces the formation of finer CuO nanoparticles with respect to the traditional coprecipitation method,thereby resulting in a better reducibility.Benefiting from both the enhanced acidity and reducibility,the Ce-Cu-W-O microspheres deliver excellent low-temperature vinyl chloride oxidation activity(a reaction rate of 2.01×10^-7 mol/(gcat·s)at 250℃)and high HCl selectivity.Moreover,subtle deactivation occurs after the three cycling activity tests,and a stable vinyl chloride conversion as well as mineralization are observed during the 72-h durability test at 300℃,which demonstrates good thermal stability.Our strategy can provide new insights into the design and synthesis of metal oxides for catalytic oxidation of chlorinated volatile organic compounds.
基金the National Natural Science Foundation of China(Nos.21875037,21407025)the National Science Foundation of Fujian Province(No.2016J01047)the New Century Talent Project of Fujian Province.
文摘Summary of main observation and conclusion A series of electrospun LaCoO3 perovskites derived from CoX2 (X =CH3COO-,NO3-) were prepared and investigated for total propane oxidation.It is shown that pure rhombohedral perovskite LaCoO3 from Co(CH3COO)2 can be obtained at a relatively low temperature,400 ℃,benefitting from the complexation effect of CH3COO-.On the other hand,CH3COO-can accelerate the complete decomposition of polymer.The low-temperature process can protect LaCoO3 nanoparticles from growing up.