This study investigates the vibration transmission and suppression of a laminated composite panel with variable angle tow(VAT)designs and an attached inerter-based passive nonlinear energy sink.Based on analytical and...This study investigates the vibration transmission and suppression of a laminated composite panel with variable angle tow(VAT)designs and an attached inerter-based passive nonlinear energy sink.Based on analytical and numerical methodologies,the substructure technique is used to obtain a steady-state dynamic response and the results are verified by experimental and analytical methods.It is demonstrated that fiber orientation has a significant impact on the natural frequencies.The dynamic responses and energy transmission path characteristics are determined and evaluated by forced vibration analysis.The main vibration transmission paths inside the structure are displayed using power flow density vectors.It is demonstrated that the dynamic responses of the plate can be changed considerably by using various fiber placement schemes and passive suppression devices.In addition,it is indicated that the vibration transmission paths are significantly influenced by the tailored fiber angles for improved dynamic performance.Our investigation enhances the understanding of enhanced vibration suppression designs of variable-stiffness composite plates with attached passive devices.展开更多
This study focused on the effects of addition of xanthan gum(XG)on the rheological properties of soy protein isolate(SPI)solution.Three types of tests(steady shear test,strain sweep test,and frequency sweep test)were ...This study focused on the effects of addition of xanthan gum(XG)on the rheological properties of soy protein isolate(SPI)solution.Three types of tests(steady shear test,strain sweep test,and frequency sweep test)were performed to figure out the influences of shear rate on the viscosity of the SPI-XG hybrid system,the effects of strain variable on the storage modulus of the hybrid system,and the effects of frequency on both the storage modulus and the loss modulus of the hybrid system,respectively.SPI-XG hybrid system showed more obvious shear-thinning properties compared to pure SPI and pure XG solution.Meanwhile,it was found that the critical point of hybrid system was highly related to the XG concentration.XG can postpone the critical point strain amplitude to a higher value,and the addition of XG can enhance the strain resistance of hybrid system.The concentration of XG influenced the viscoelastic frequency dependence of the hybrid system significantly and complicatedly.After the addition of XG,the correlation between G′and frequency changed from negative to positive.展开更多
基金the National Natural Science Foundation of China(Nos.12172185,U1809218,and U1864211)the Zhejiang Provincial Natural Science Foundation of China(Nos.LY22A020006,LD22E050011,and LQ23A020003)+1 种基金the Ningbo Municipal Natural Science Foundation of China(No.2022J174)the Ningbo Key Projects of Science and Technology Innovation 2025 Plan(No.2021Z124).
文摘This study investigates the vibration transmission and suppression of a laminated composite panel with variable angle tow(VAT)designs and an attached inerter-based passive nonlinear energy sink.Based on analytical and numerical methodologies,the substructure technique is used to obtain a steady-state dynamic response and the results are verified by experimental and analytical methods.It is demonstrated that fiber orientation has a significant impact on the natural frequencies.The dynamic responses and energy transmission path characteristics are determined and evaluated by forced vibration analysis.The main vibration transmission paths inside the structure are displayed using power flow density vectors.It is demonstrated that the dynamic responses of the plate can be changed considerably by using various fiber placement schemes and passive suppression devices.In addition,it is indicated that the vibration transmission paths are significantly influenced by the tailored fiber angles for improved dynamic performance.Our investigation enhances the understanding of enhanced vibration suppression designs of variable-stiffness composite plates with attached passive devices.
基金supported by Beijing Municipal Natural Science Foundation(6184036)Beijing Excellent Talent Training Project(2017000020124 G100)Research Foundation for Youth Scholars of Beijing Technology and Business University(QNJJ2016-17).
文摘This study focused on the effects of addition of xanthan gum(XG)on the rheological properties of soy protein isolate(SPI)solution.Three types of tests(steady shear test,strain sweep test,and frequency sweep test)were performed to figure out the influences of shear rate on the viscosity of the SPI-XG hybrid system,the effects of strain variable on the storage modulus of the hybrid system,and the effects of frequency on both the storage modulus and the loss modulus of the hybrid system,respectively.SPI-XG hybrid system showed more obvious shear-thinning properties compared to pure SPI and pure XG solution.Meanwhile,it was found that the critical point of hybrid system was highly related to the XG concentration.XG can postpone the critical point strain amplitude to a higher value,and the addition of XG can enhance the strain resistance of hybrid system.The concentration of XG influenced the viscoelastic frequency dependence of the hybrid system significantly and complicatedly.After the addition of XG,the correlation between G′and frequency changed from negative to positive.