Salicylic acid(SA),a vital endogenous hormone,plays a crucial role in plant growth and the response to abiotic and biotic stress.Isochorismate synthase(ICS)and phenylalanine ammonia lyase(PAL)are critical rate-limitin...Salicylic acid(SA),a vital endogenous hormone,plays a crucial role in plant growth and the response to abiotic and biotic stress.Isochorismate synthase(ICS)and phenylalanine ammonia lyase(PAL)are critical rate-limiting enzymes for SA synthesis.Fusarium head blight(FHB)seriously threatens the safety of wheat production,but increasing the content of SA can enhance FHB resistance.However,the pathway of SA synthesis and regulation in wheat remains unknown.In this study,three wheat ICS(TaICSA,TaICSB,and TaICSD)were identified,and their functions were validated in vitro for isomerizing chorismate to isochorismate.The mutation of one or two homoeoalleles of TaICSA,TaICSB,and TaICSD in the wheat variety‘Cadenza’reduced SA levels under ultraviolet treatment and Fusarium graminearum infection,further enhancing sensitivity to FHB.Overexpression of TaICSA can significantly enhance SA levels and resistance to FHB.To further study SA synthesis pathways in wheat and avoid interference with pathogenicity related genes,the leaves of wild-type Cadenza and different TaICS mutant lines were subjected to ultraviolet treatment for transcriptomic analysis.The results showed that 37 PALs might be involved in endogenous SA synthesis,and 82 WRKY and MYB family transcription factors may regulate the expression of ICS and PAL.These results were further confirmed by RT-PCR.In conclusion,this study expands our knowledge of SA biosynthesis and identifies TaICSA,as well as several additional candidate genes that encode transcription factors for regulating endogenous SA levels,as part of an efficient strategy for enhancing FHB resistance in wheat.展开更多
To study the seismic resilience of a concrete-framed hospital building with viscous dampers,the elastoplastic time history analysis of a three-story concrete-framed hospital building under moderate and rare earthquake...To study the seismic resilience of a concrete-framed hospital building with viscous dampers,the elastoplastic time history analysis of a three-story concrete-framed hospital building under moderate and rare earthquakes was carried out by finite element analysis software.The structure’s overall response was studied,meanwhile,the seismic resilience of the building was evaluated from three aspects:repair cost,repair time,and casualties.The results show that viscous dampers can effectively reduce the repair cost,repair time,and casualties under earthquakes.Compared with the structure without dampers,the repair cost and repair time of the structure with dampers have been reduced by 67%and 69%respectively under moderate earthquakes,42%and 39%respectively under rare earthquakes,and the seismic resilience grade has been increased from zero to one star.展开更多
With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels...With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels,due to its high gravimetric energy density(142 MJ kg^(-1)),high abundance(H_(2)O),and environmentalfriendliness.However,due to its low volume density,effective and safe hydrogen storage techniques are now becoming the bottleneck for the"hydrogen economy".Under such a circumstance,Mg-based hydrogen storage materials garnered tremendous interests due to their high hydrogen storage capacity(~7.6 wt%for MgH_(2)),low cost,and excellent reversibility.However,the high thermodynamic stability(ΔH=-74.7 kJ mol^(-1)H_(2))and sluggish kinetics result in a relatively high desorption temperature(>300℃),which severely restricts widespread applications of MgH_(2).Nano-structuring has been proven to be an effective strategy that can simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH_(2),possibly meeting the demand for rapid hydrogen desorption,economic viability,and effective thermal management in practical applications.Herein,the fundamental theories,recent advances,and practical applications of the nanostructured Mg-based hydrogen storage materials are discussed.The synthetic strategies are classified into four categories:free-standing nano-sized Mg/MgH_(2)through electrochemical/vapor-transport/ultrasonic methods,nanostructured Mg-based composites via mechanical milling methods,construction of core-shell nano-structured Mg-based composites by chemical reduction approaches,and multi-dimensional nano-sized Mg-based heterostructure by nanoconfinement strategy.Through applying these strategies,near room temperature ab/de-sorption(<100℃)with considerable high capacity(>6 wt%)has been achieved in nano Mg/MgH_(2)systems.Some perspectives on the future research and development of nanostructured hydrogen storage materials are also provided.展开更多
The steel lining of huge facilities is a significant structure,which experiences extreme environments and needs to be inspected periodically after manufacture.However,due to the complexity(crisscross welds,curved surf...The steel lining of huge facilities is a significant structure,which experiences extreme environments and needs to be inspected periodically after manufacture.However,due to the complexity(crisscross welds,curved surface,etc.)of their inside environments,high demands for stable adhesion and curvature adaptability are put forward.This paper presents a novel wheeled magnetic adhesion robot with passive suspension applied in nuclear power containment called NuBot,and mainly focuses on the following aspects:(1)proposing the wheeled locomotion suspension to adapt the robot to the uneven surface;(2)implementing the parameter optimization of NuBot.A comprehensive optimization model is established,and global optimal dimensions are properly chosen from performance atlases;(3)determining the normalization factor and actual dimensional parameters by constraints of the steel lining environment;(4)structure design of the overall robot and the magnetic wheels are completed.Experiments show that the robot can achieve precise locomotion on both strong and weak magnetic walls with various inclination angles,and can stably cross the 5 mm weld seam.Besides,its maximum payload capacity reaches 3.6 kg.Results show that the NuBot designed by the proposed systematic method has good comprehensive capabilities of surface-adaptability,adhesion stability,and payload.Besides,the robot can be applied in more ferromagnetic environments and the design method offers guidance for similar wheeled robots with passive suspension.展开更多
MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V...MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V_(2)O_(5) nanosheets(H-V_(2)O_(5))are specifically designed and used as catalysts to improve the hydrogen storage properties of MgH_(2).The as-prepared MgH_(2)-H-V_(2)O_(5) composites exhibit low desorption temperatures(Tonset=185℃)with a hydrogen capacity of 6.54 wt%,fast kinetics(Ea=84.55±1.37 kJ mol^(-1) H_(2) for desorption),and long cycling stability.Impressively,hydrogen absorption can be achieved at a temperature as low as 30℃ with a capacity of 2.38 wt%within 60 min.Moreover,the composites maintain a capacity retention rate of~99%after 100 cycles at 275℃.Experimental studies and theoretical calculations demonstrate that the in-situ formed VH_(2)/V catalysts,unique 2D structure of H-V_(2)O_(5) nanosheets,and abundant oxygen vacancies positively contribute to the improved hydrogen sorption properties.Notably,the existence of oxygen vacancies plays a double role,which could not only directly accelerate the hydrogen ab/de-sorption rate of MgH_(2),but also indirectly affect the activity of the catalytic phase VH_(2)/V,thereby further boosting the hydrogen storage performance of MgH_(2).This work highlights an oxygen vacancy excited“hydrogen pump”effect of VH_(2)/V on the hydrogen sorption of Mg/MgH_(2).The strategy developed here may pave a new way toward the development of oxygen vacancy-rich transition metal oxides catalyzed hydride systems.展开更多
High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion te...High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts.展开更多
Powdery mildew(PM),caused by Blumeria graminis f.sp.tritici(Bgt),is one of the destructive wheat diseases worldwide.Wild emmer wheat(Triticum turgidum ssp.dicoccoides,WEW),a tetraploid progenitor of common wheat,is a ...Powdery mildew(PM),caused by Blumeria graminis f.sp.tritici(Bgt),is one of the destructive wheat diseases worldwide.Wild emmer wheat(Triticum turgidum ssp.dicoccoides,WEW),a tetraploid progenitor of common wheat,is a valuable genetic resource for wheat disease resistance breeding programs.We developed three hexaploid pre-breeding lines with PM resistance genes derived from three WEW accessions.These resistant pre-breeding lines were crossed with susceptible common wheat accessions.Segregations in the F2populations were 3 resistant:1 susceptible,suggesting a single dominant allele in each resistant parent.Mapping of the resistance gene in each line indicated a single locus on the long arm of chromosome 7A,at the approximate location of previously cloned Pm60 from T.urartu.Sanger sequencing revealed three different Pm60 haplotypes(Hap 3,Hap 5,and Hap 6).Co-segregating diagnostic markers were developed for identification and selection of each haplotype.The resistance function of each haplotype was verified by the virus-induced gene silencing(VIGS).Common wheat lines carrying each of these Pm60 haplotypes were resistant to most Bgt isolates and differences in the response arrays suggested allelic variation in response.展开更多
Hydrogen holds the advantages of high energy density,great natural abundance and zero emission,making it suitable for large scale and long term energy storage,while its safe and efficient storage is still challenging....Hydrogen holds the advantages of high energy density,great natural abundance and zero emission,making it suitable for large scale and long term energy storage,while its safe and efficient storage is still challenging.Among various solid state hydrogen storage materials,MgH_(2) is promising for industrial applications due to its high gravimetric and volumetric hydrogen densities and the abundance of Mg on earth.However,the practical application of MgH_(2) has been limited by its stable thermodynamics and slow hydrogen desorption kinetics.Nanocatalysis is considered as a promising approach for improving the hydrogen storage performance of MgH_(2) and bringing it closer to the requirements of commercial applications.It is worth mentioning that the recently emerging two-dimensional material,MXene,has showcased exceptional catalytic abilities in modifying the hydrogen storage properties of MgH_(2).Besides,MXene possesses a high surface area,excellent chemical/physical stability,and negatively charged terminating groups,making it an ideal support for the"nanoconfinement"of MgH_(2) or highly active catalysts.Herein,we endeavor to provide a comprehensive overview of recent investigations on MXene-based catalysts and MXene supports for improving the hydrogen sorption properties of Mg/MgH_(2).The mechanisms of hydrogen sorption involved in Mg-MXene based composites are highlighted with special emphases on thermodynamics,kinetics,and catalytic behaviors.The aim of this work is to provide a comprehensive and objective review of researches on the development of high-performance catalysts/supports to improve hydrogen storage performances of Mg/MgH_(2) and to identify the opportunities and challenges for future applications.展开更多
Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl...Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.展开更多
The development of a core set of SNP molecular markers that could be widely used in soybean genetic research would greatly facilitate research into the genetic diversity of soybean.We conducted an analysis of Tokachi ...The development of a core set of SNP molecular markers that could be widely used in soybean genetic research would greatly facilitate research into the genetic diversity of soybean.We conducted an analysis of Tokachi nagaha and 137 of its descendant soybean cultivars using 4044 SNP markers with the goal of determining the appropriate number of single-nucleotide polymorphisms(SNPs)needed to construct unambiguous molecular IDs and characterize genetic diversity based on a genetic distance matrix correlation method.When the number of SNPs was held constant,the number of accession pairs that could be distinguished increased as the polymorphism informative content(PIC)value of the SNPs increased.A core panel of 20 selected SNPs from 11 linkage groups with a mean PIC value of 0.3703 and a range of 0.3640–0.3749 was able to identify almost all of the accession pairs in our study[9445 pairs(99.92%)].The eight accession pairs that could not be identified with this core SNP set all originated from the same province and some of them had the same parental cultivars.The molecular IDs of the 138 accessions were constructed using the core 20 SNPs.It is known that both the number of SNPs and PIC values should be considered when SNPs are selected for use in the analysis of genetic diversity.In this study,when the PIC value was 0.3460,the correlation coefficient between the genetic distance matrices associated with a panel of 200 SNPs and the total population was>0.800,indicating satisfactory correlation.Our high-accuracy,high-resolution core SNP panel for germplasm fingerprinting and our findings about assessing genetic diversity will likely markedly improve the management and utilization efficiency of soybean germplasm resources.展开更多
MgH_(2) has attracted intensive interests as one of the most promising hydrogen storage materials.Nevertheless,the high desorption temperature,sluggish kinetics,and rapid capacity decay hamper its commercial applicati...MgH_(2) has attracted intensive interests as one of the most promising hydrogen storage materials.Nevertheless,the high desorption temperature,sluggish kinetics,and rapid capacity decay hamper its commercial application.Herein,2D TiO_(2) nanosheets with abundant oxygen vacancies are used to fabricate a flower-like MgH_(2)/TiO_(2) heterostructure with enhanced hydrogen storage performances.Particularly,the onset hydrogen desorption temperature of the MgH_(2)/TiO_(2) heterostructure is lowered down to 180℃(295℃ for blank MgH_(2)).The initial desorption rate of MgH_(2)/TiO_(2) reaches 2.116 wt% min^(-1) at 300℃,35 times of the blank MgH_(2) under the same conditions.Moreover,the capacity retention is as high as 98.5% after 100 cycles at 300℃,remarkably higher than those of the previously reported MgH_(2)-TiO_(2) composites.Both in situ HRTEM observations and ex situ XPS analyses confirm that the synergistic effects from multi-valance of Ti species,accelerated electron transportation caused by oxygen vacancies,formation of catalytic Mg-Ti oxides,and stabilized MgH_(2) NPs confined by TiO_(2) nanosheets contribute to the high stability and kinetically accelerated hydrogen storage performances of the composite.The strategy of using 2D substrates with abundant defects to support nano-sized energy storage materials to build heterostructure is therefore promising for the design of high-performance energy materials.展开更多
The concept of core collection(CC) provides a new way of management and utilization of plant germplasm resources. In this study, an integrated applied core collection(IACC) of soybean was developed based on evaluation...The concept of core collection(CC) provides a new way of management and utilization of plant germplasm resources. In this study, an integrated applied core collection(IACC) of soybean was developed based on evaluation data for desirable agronomic and nutritional traits of available soybean germplasm resources including accessions with cold tolerance, drought tolerance, salt tolerance, soybean cyst nematode resistance, soybean mosaic virus resistance, high protein content, and high fat content. The newly formed collection encompasses accessions with high genetic diversity and desirable agronomic traits. The genetic diversity of the newly formed IACC was compared with that of the established mini core collection(MCC) of soybean with the aid of simple sequence repeat(SSR) markers and phenotypic traits. The results showed that at the molecular level, soybean IACC harbored a similar level of genetic diversity as the established MCC, and that at the phenotypic level the IACC encompasses more accessions with desirable traits than does the established MCC. The development of soybean IACC lays a foundation for breeding projects to meet different objectives in different eco-regions.展开更多
Soybean cyst nematode(SCN,Heterodera glycines Ichinohe)is one of the most economically destructive pathogens.The soybean line Zhongpin03-5373(ZP),which combines resistance genes from several donors,is highly resistant...Soybean cyst nematode(SCN,Heterodera glycines Ichinohe)is one of the most economically destructive pathogens.The soybean line Zhongpin03-5373(ZP),which combines resistance genes from several donors,is highly resistant to SCN race 3(SCN3).In our previous study,two QTL(rhg1 and GmSNAP11)were identified in a population of recombinant inbred lines derived from a cross between ZP and the susceptible parent Zhonghuang 13.The two QTL explained around one-third of the resistance,suggesting the presence of further QTL contributing to SCN resistance.In the present study,we used an improved version of the geneticmap comprising the previously applied 1062 molecular markers and 47 newly developed InDel(insertion-deletion)markers.The improved map revealed a novel locus contributing to SCN3 resistance:qSCN3-1,flanked by InDelmarker InDel1-7 and SNPmarker Map-0047,explained 4.55%of the phenotypic variance for resistance to SCN3 and was not involved in digenic epistatic interaction with rhg1 and GmSNAP11.Haplotypes of Map-0047_CAPS(a CAPS marker developed for Map-0047)and InDel1-7 were significantly associated with SCN3 resistance in a panel of 209 resistant and susceptible accessions.Using further allele-combination analysis for three functional markers representing three cloned resistance genes(rhg1,Rhg4,andGmSNAP11)and twomarkers flanking qSCN3-1,we found that adding the resistance allele of qSCN3-1 greatly increased soybean resistance to SCN,even in diverse genetic backgrounds.The qSCN3-1 locus will be useful for marker-assisted polygene pyramid breeding and should be targeted for the future identification of candidate genes.展开更多
Objective The aim of this study was to investigate the clinical efficacy of neoadjuvant chemotherapy(NACT) and the prognostic factors for advanced epithelial ovarian cancer(EOC).Methods We enrolled 241 patients with s...Objective The aim of this study was to investigate the clinical efficacy of neoadjuvant chemotherapy(NACT) and the prognostic factors for advanced epithelial ovarian cancer(EOC).Methods We enrolled 241 patients with stage III and IV EOC who were diagnosed at the Yunnan Cancer Hospital between October 2006 and December 2015.The observation(NACT-IDS) group(n = 119) received 1–3 courses of platinum-based NACT,followed by interval debulking surgery(IDS) and 6–8 courses of postoperative chemotherapy.The control group underwent primary debulking surgery(PDS)(n = 122) followed by 6–8 courses of postoperative chemotherapy.We analyzed the general conditions of the operations and the survival of both groups.Results Operating time,intraoperative blood loss and postoperative hospitalization were significantly lower in the NACT-IDS group(P < 0.05).The rate of optimal cytoreductive surgery was significantly higher in the NACT-IDS group(P < 0.05).A visible residual lesion was observed in 49(41.18%) and 48(40%) cases in the NACT-IDS and PDS groups,respectively,which were not significantly different(P > 0.05).The percentage of International Federation of Gynecology and Obstetrics(FIGO) stage IV tumors and the recurrence rates were significantly higher in the NACT-IDS group(P < 0.05).The mortality rates were 45.19%(47/104) and 35.19%(38/108) in the NACT-IDS and PDS groups,respectively(P > 0.05).Progression-free survival was 23.75 ± 9.98 and 23.57 ± 12.25 months in the NACT-IDS and PDS groups,respectively(P > 0.05).Overall survival(OS) was 31.11 ± 15.66 and 29.63 ± 18.00 months in the NACTIDS and PDS groups,respectively(P > 0.05).Optimal cytoreductive surgery with or without residual lesion was an independent influencing factor for advanced EOC in multivariate analysis.OS of patients treated with ≥8 courses of chemotherapy was significantly longer than those treated with < 8 courses.Conclusion NACT could improve the intra-and postoperative conditions in advanced EOC patients.Although the percentage of FIGO stage IV cancer was significantly higher in the NACT-IDS group,the prognosis was similar in both the NACT-IDS and PDS groups,suggesting that NACT improves the clinical outcome of advanced EOC.Optimal cytoreductive surgery with no residual lesion is a long-term protective factor in advanced EOC.At least 8 courses of chemotherapy overall or ≥ 6 courses postoperatively improves the OS.展开更多
The land ecosystem service function value contains the gas regulating function value, air purification function value, water conservation value, land conser-vation value, soil nutrient conservation value and maintain ...The land ecosystem service function value contains the gas regulating function value, air purification function value, water conservation value, land conser-vation value, soil nutrient conservation value and maintain biodiversity value. Based on the method of market value and the data of Hubei Statistical yearbook, cultivat-ed land resources of ecosystem service function value is 730 038.69Mil ion in 2007-2009, and 714 774.99 Mil ion in 2010-2012 in Wuhan Metropolitan Area. After three years of development, Wuhan Metropolitan Area of ecological value of cultivated land has increased by about 3.97%. From the point of each composition, the im-portance of gas regulating function of cultivated land resources and water conserva-tion function is the forefront. From the point of spatial distribution, the highest of annual average value of the cultivated land ecological was Huanggang (1.725 bil ion yuan), the lowest was Ezhou (217.868 6 mil ion yuan) in 2010-2012. From the point of space changes, the land ecological value increased only in Qianjiang city, while farmland ecological value in other cities was fal ing The conclusion is of direc-tive significance to the regional land protection policy and the farmland reasonable distribution, for Wuhan Metropolitan Area and other areas.展开更多
To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensati...To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensation method to avoid category II PIOs is investigated. Firstly, the AW compensation method originally used for controlling input magnitude limited system is introduced, then this method is extended for controlling input rate-limiting system through a circle criterion theorem. Secondly, the establishment of the AW compensator is transformed into the solving of linear matrix inequalities. Finally, an AW compensator establishment algorithm for the closed-loop pilot-vehicle system with the rate-limiting actuator is obtained. The effectiveness of the AW compensation method to avoid category II PIOs is validated by time-domain simulations,and compared with rate-limited feedback(RLF) command rate compensation method. The results show that the AW compensation method can effectively suppress category II PIOs and maintain the nominal performance when the closed-loop pilot-vehicle system is normal. Unlike the command rate compensator which works upon system uninterruptedly, the AW compensation method affects the closed-loop pilot-vehicle system only when the rate-limiting of actuator is activated, so it is a novel PIO avoidance method.展开更多
The anisotropy of the structure and properties caused by the strong epitaxial growth of grains during laser powder bed fusion(L-PBF)significantly affects the mechanical performance of Inconel 718 alloy components such...The anisotropy of the structure and properties caused by the strong epitaxial growth of grains during laser powder bed fusion(L-PBF)significantly affects the mechanical performance of Inconel 718 alloy components such as turbine disks.The defects(lack-of-fusion Lo F)in components processed via L-PBF are detrimental to the strength of the alloy.The purpose of this study is to investigate the effect of laser scanning parameters on the epitaxial grain growth and LoF formation in order to obtain the parameter space in which the microstructure is refined and LoF defect is suppressed.The temperature field of the molten pool and the epitaxial grain growth are simulated using a multiscale model combining the finite element method with the phase-field method.The LoF model is proposed to predict the formation of LoF defects resulting from insufficient melting during L-PBF.Defect mitigation and grain-structure control during L-PBF can be realized simultaneously in the model.The simulation shows the input laser energy density for the as-deposited structure with fine grains and without LoF defects varied from 55.0–62.5 J·mm^(-3)when the interlayer rotation angle was 0°–90°.The optimized process parameters(laser power of 280 W,scanning speed of 1160 mm·s^(-1),and rotation angle of 67°)were computationally screened.In these conditions,the average grain size was 7.0μm,and the ultimate tensile strength and yield strength at room temperature were(1111±3)MPa and(820±7)MPa,respectively,which is 8.8%and10.5%higher than those of reported.The results indicating the proposed multiscale computational approach for predicting grain growth and Lo F defects could allow simultaneous grain-structure control and defect mitigation during L-PBF.展开更多
Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for ...Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.展开更多
The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain.However,most of the wheel-legged robots only have one-dir...The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain.However,most of the wheel-legged robots only have one-directional obstacle-crossing ability.During the motion,most of the wheel-legged robots’centroid fluctuates violently,which damages the stability of the load.What’s more,many designs of the obstacle-crossing part and transformation-driving part of this structure are highly coupled,which limits its optimal performance in both aspects.This paper presents a novel wheel-legged robot with a rim-shaped changeable wheel,which has a bi-directional and smooth obstacle-crossing ability.Based on the kinematic model,the geometric parameters of the wheel structure and the design variables of the driving four-bar mechanism are optimized separately.The kinetostatics model of the mobile platform when climbing stairs is established to determine the body length and angular velocity of the driving wheels.A pro-totype is made according to the optimal parameters.Experiments show that the prototype installed with the novel transformable wheels can overcome steps with a height of 1.52 times of its wheel radius with less fluctuation of its centroid and performs good locomotion capabilities in different environments.展开更多
Soybean(Glycine max L.)is a protein and oil crop grown worldwide.Its fitness may be reduced by deleterious mutations,whose identification and purging is desirable for crop breeding.In the published whole-genome re-seq...Soybean(Glycine max L.)is a protein and oil crop grown worldwide.Its fitness may be reduced by deleterious mutations,whose identification and purging is desirable for crop breeding.In the published whole-genome re-sequenced data of 2214 soybean accessions,including 221 wild soybean,1132 landrace cultivars and 861 improved soybean lines,we identified 115,275 deleterious single-nucleotide polymorphisms(SNPs).Numbers of deleterious alleles increased from wild soybeans to landraces and decreased from landraces to modern improved lines.Genes in selective-sweep regions showed fewer deleterious mutations than the remaining genes.Deleterious mutations explained 4.3%-48%more phenotypic variation than randomly selected SNPs for resistance to soybean cyst nematode race 2(SCN2),soybean cyst nematode race 3(SCN3)and soybean mosaic virus race 3(SMV3).These findings illustrate how mutation load has shifted during soybean domestication,expansion and improvement and provide candidate sites for breeding out deleterious mutations in soybean by genome editing and/or conventional breeding focused on the selection of progeny with fewer deleterious alleles.展开更多
基金supported by the National Natural Science Foundation of China(3210170116)the Science and Technology Department of Sichuan Province(2022YFSY0035).
文摘Salicylic acid(SA),a vital endogenous hormone,plays a crucial role in plant growth and the response to abiotic and biotic stress.Isochorismate synthase(ICS)and phenylalanine ammonia lyase(PAL)are critical rate-limiting enzymes for SA synthesis.Fusarium head blight(FHB)seriously threatens the safety of wheat production,but increasing the content of SA can enhance FHB resistance.However,the pathway of SA synthesis and regulation in wheat remains unknown.In this study,three wheat ICS(TaICSA,TaICSB,and TaICSD)were identified,and their functions were validated in vitro for isomerizing chorismate to isochorismate.The mutation of one or two homoeoalleles of TaICSA,TaICSB,and TaICSD in the wheat variety‘Cadenza’reduced SA levels under ultraviolet treatment and Fusarium graminearum infection,further enhancing sensitivity to FHB.Overexpression of TaICSA can significantly enhance SA levels and resistance to FHB.To further study SA synthesis pathways in wheat and avoid interference with pathogenicity related genes,the leaves of wild-type Cadenza and different TaICS mutant lines were subjected to ultraviolet treatment for transcriptomic analysis.The results showed that 37 PALs might be involved in endogenous SA synthesis,and 82 WRKY and MYB family transcription factors may regulate the expression of ICS and PAL.These results were further confirmed by RT-PCR.In conclusion,this study expands our knowledge of SA biosynthesis and identifies TaICSA,as well as several additional candidate genes that encode transcription factors for regulating endogenous SA levels,as part of an efficient strategy for enhancing FHB resistance in wheat.
基金Financial support for this work was provided by the Science and Technology Commission of Shanghai Municipality(Project No.22YF1409500).
文摘To study the seismic resilience of a concrete-framed hospital building with viscous dampers,the elastoplastic time history analysis of a three-story concrete-framed hospital building under moderate and rare earthquakes was carried out by finite element analysis software.The structure’s overall response was studied,meanwhile,the seismic resilience of the building was evaluated from three aspects:repair cost,repair time,and casualties.The results show that viscous dampers can effectively reduce the repair cost,repair time,and casualties under earthquakes.Compared with the structure without dampers,the repair cost and repair time of the structure with dampers have been reduced by 67%and 69%respectively under moderate earthquakes,42%and 39%respectively under rare earthquakes,and the seismic resilience grade has been increased from zero to one star.
基金support from the National Key Research&Development Program(2022YFB3803700)of ChinaNational Natural Science Foundation(No.52171186)financial support from the Center of Hydrogen Science,Shanghai Jiao Tong University。
文摘With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels,due to its high gravimetric energy density(142 MJ kg^(-1)),high abundance(H_(2)O),and environmentalfriendliness.However,due to its low volume density,effective and safe hydrogen storage techniques are now becoming the bottleneck for the"hydrogen economy".Under such a circumstance,Mg-based hydrogen storage materials garnered tremendous interests due to their high hydrogen storage capacity(~7.6 wt%for MgH_(2)),low cost,and excellent reversibility.However,the high thermodynamic stability(ΔH=-74.7 kJ mol^(-1)H_(2))and sluggish kinetics result in a relatively high desorption temperature(>300℃),which severely restricts widespread applications of MgH_(2).Nano-structuring has been proven to be an effective strategy that can simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH_(2),possibly meeting the demand for rapid hydrogen desorption,economic viability,and effective thermal management in practical applications.Herein,the fundamental theories,recent advances,and practical applications of the nanostructured Mg-based hydrogen storage materials are discussed.The synthetic strategies are classified into four categories:free-standing nano-sized Mg/MgH_(2)through electrochemical/vapor-transport/ultrasonic methods,nanostructured Mg-based composites via mechanical milling methods,construction of core-shell nano-structured Mg-based composites by chemical reduction approaches,and multi-dimensional nano-sized Mg-based heterostructure by nanoconfinement strategy.Through applying these strategies,near room temperature ab/de-sorption(<100℃)with considerable high capacity(>6 wt%)has been achieved in nano Mg/MgH_(2)systems.Some perspectives on the future research and development of nanostructured hydrogen storage materials are also provided.
基金Supported by Shanghai Nuclear Star Nuclear Power Technology Co.,Ltd,National Natural Science Foundation of China(Grant No.51735009)State Key Lab of Mechanical System and Vibration Project(Grant No.MSVZD202008).
文摘The steel lining of huge facilities is a significant structure,which experiences extreme environments and needs to be inspected periodically after manufacture.However,due to the complexity(crisscross welds,curved surface,etc.)of their inside environments,high demands for stable adhesion and curvature adaptability are put forward.This paper presents a novel wheeled magnetic adhesion robot with passive suspension applied in nuclear power containment called NuBot,and mainly focuses on the following aspects:(1)proposing the wheeled locomotion suspension to adapt the robot to the uneven surface;(2)implementing the parameter optimization of NuBot.A comprehensive optimization model is established,and global optimal dimensions are properly chosen from performance atlases;(3)determining the normalization factor and actual dimensional parameters by constraints of the steel lining environment;(4)structure design of the overall robot and the magnetic wheels are completed.Experiments show that the robot can achieve precise locomotion on both strong and weak magnetic walls with various inclination angles,and can stably cross the 5 mm weld seam.Besides,its maximum payload capacity reaches 3.6 kg.Results show that the NuBot designed by the proposed systematic method has good comprehensive capabilities of surface-adaptability,adhesion stability,and payload.Besides,the robot can be applied in more ferromagnetic environments and the design method offers guidance for similar wheeled robots with passive suspension.
基金the support from the National Key Research&Development Program(2022YFB3803700)of ChinaNational Natural Science Foundation(No.52171186)the financial support from the Center of Hydrogen Science,Shanghai Jiao Tong University。
文摘MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V_(2)O_(5) nanosheets(H-V_(2)O_(5))are specifically designed and used as catalysts to improve the hydrogen storage properties of MgH_(2).The as-prepared MgH_(2)-H-V_(2)O_(5) composites exhibit low desorption temperatures(Tonset=185℃)with a hydrogen capacity of 6.54 wt%,fast kinetics(Ea=84.55±1.37 kJ mol^(-1) H_(2) for desorption),and long cycling stability.Impressively,hydrogen absorption can be achieved at a temperature as low as 30℃ with a capacity of 2.38 wt%within 60 min.Moreover,the composites maintain a capacity retention rate of~99%after 100 cycles at 275℃.Experimental studies and theoretical calculations demonstrate that the in-situ formed VH_(2)/V catalysts,unique 2D structure of H-V_(2)O_(5) nanosheets,and abundant oxygen vacancies positively contribute to the improved hydrogen sorption properties.Notably,the existence of oxygen vacancies plays a double role,which could not only directly accelerate the hydrogen ab/de-sorption rate of MgH_(2),but also indirectly affect the activity of the catalytic phase VH_(2)/V,thereby further boosting the hydrogen storage performance of MgH_(2).This work highlights an oxygen vacancy excited“hydrogen pump”effect of VH_(2)/V on the hydrogen sorption of Mg/MgH_(2).The strategy developed here may pave a new way toward the development of oxygen vacancy-rich transition metal oxides catalyzed hydride systems.
基金the staff at Beamline (BL08U1-A and BL11B)of the Shanghai Synchrotron Radiation Facility (SSRF)the support from the National Key Research&Development Program of China (2022YFB3803700)+2 种基金the National Natural Science Foundation of China (52171186)the support through the Overseas Outstanding Youth Fund and Shanghai Pujiang Talent Project (21PJ1408500)the financial support from the Center of Hydrogen Science,Shanghai Jiao Tong University。
文摘High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts.
基金supported by grants from the National Key Research and Development Program of China(2023YFF1000404,2022YFF10001501)the National Natural Science Foundation of China(32171971)。
文摘Powdery mildew(PM),caused by Blumeria graminis f.sp.tritici(Bgt),is one of the destructive wheat diseases worldwide.Wild emmer wheat(Triticum turgidum ssp.dicoccoides,WEW),a tetraploid progenitor of common wheat,is a valuable genetic resource for wheat disease resistance breeding programs.We developed three hexaploid pre-breeding lines with PM resistance genes derived from three WEW accessions.These resistant pre-breeding lines were crossed with susceptible common wheat accessions.Segregations in the F2populations were 3 resistant:1 susceptible,suggesting a single dominant allele in each resistant parent.Mapping of the resistance gene in each line indicated a single locus on the long arm of chromosome 7A,at the approximate location of previously cloned Pm60 from T.urartu.Sanger sequencing revealed three different Pm60 haplotypes(Hap 3,Hap 5,and Hap 6).Co-segregating diagnostic markers were developed for identification and selection of each haplotype.The resistance function of each haplotype was verified by the virus-induced gene silencing(VIGS).Common wheat lines carrying each of these Pm60 haplotypes were resistant to most Bgt isolates and differences in the response arrays suggested allelic variation in response.
基金the support from the National Natural Science Foundation(No.52171186)National Key Research&Development Program(2022YFB3803700)of China.
文摘Hydrogen holds the advantages of high energy density,great natural abundance and zero emission,making it suitable for large scale and long term energy storage,while its safe and efficient storage is still challenging.Among various solid state hydrogen storage materials,MgH_(2) is promising for industrial applications due to its high gravimetric and volumetric hydrogen densities and the abundance of Mg on earth.However,the practical application of MgH_(2) has been limited by its stable thermodynamics and slow hydrogen desorption kinetics.Nanocatalysis is considered as a promising approach for improving the hydrogen storage performance of MgH_(2) and bringing it closer to the requirements of commercial applications.It is worth mentioning that the recently emerging two-dimensional material,MXene,has showcased exceptional catalytic abilities in modifying the hydrogen storage properties of MgH_(2).Besides,MXene possesses a high surface area,excellent chemical/physical stability,and negatively charged terminating groups,making it an ideal support for the"nanoconfinement"of MgH_(2) or highly active catalysts.Herein,we endeavor to provide a comprehensive overview of recent investigations on MXene-based catalysts and MXene supports for improving the hydrogen sorption properties of Mg/MgH_(2).The mechanisms of hydrogen sorption involved in Mg-MXene based composites are highlighted with special emphases on thermodynamics,kinetics,and catalytic behaviors.The aim of this work is to provide a comprehensive and objective review of researches on the development of high-performance catalysts/supports to improve hydrogen storage performances of Mg/MgH_(2) and to identify the opportunities and challenges for future applications.
基金supported by the University Outstanding Youth Researcher Support Program of the Education Department of Anhui Province,the National Natural Science Foundation of China(Grant Nos.11902002 and 51705002)the Sichuan Provincial Natural Science Foundation(Grant No.2022NSFSC0275)+1 种基金the Science and Technology Research Project of Chongqing Municipal Education Commission(Grant No.KJQN201901146)the Special Key Project of Technological Innovation and Application Development in Chongqing(Grant No.cstc2020jscx-dxwtBX0048).
文摘Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.
基金supported by the Development of Novel Elite Soybean Cultivars and Lines with High Oil Content (No. Z161100000916005-06)the Crop Germplasm Resources Protection Program (Nos. 2014NWB030, 2015NWB030-05)+2 种基金the Platform of National Crop Germplasm Resources of China (Nos. 2014-004, 2015-004)the National Key Technology R&D Program (No. 2011BAD35B06-2-9)the Agricultural Science and Technology Innovation Program (ASTIP) of CAAS
文摘The development of a core set of SNP molecular markers that could be widely used in soybean genetic research would greatly facilitate research into the genetic diversity of soybean.We conducted an analysis of Tokachi nagaha and 137 of its descendant soybean cultivars using 4044 SNP markers with the goal of determining the appropriate number of single-nucleotide polymorphisms(SNPs)needed to construct unambiguous molecular IDs and characterize genetic diversity based on a genetic distance matrix correlation method.When the number of SNPs was held constant,the number of accession pairs that could be distinguished increased as the polymorphism informative content(PIC)value of the SNPs increased.A core panel of 20 selected SNPs from 11 linkage groups with a mean PIC value of 0.3703 and a range of 0.3640–0.3749 was able to identify almost all of the accession pairs in our study[9445 pairs(99.92%)].The eight accession pairs that could not be identified with this core SNP set all originated from the same province and some of them had the same parental cultivars.The molecular IDs of the 138 accessions were constructed using the core 20 SNPs.It is known that both the number of SNPs and PIC values should be considered when SNPs are selected for use in the analysis of genetic diversity.In this study,when the PIC value was 0.3460,the correlation coefficient between the genetic distance matrices associated with a panel of 200 SNPs and the total population was>0.800,indicating satisfactory correlation.Our high-accuracy,high-resolution core SNP panel for germplasm fingerprinting and our findings about assessing genetic diversity will likely markedly improve the management and utilization efficiency of soybean germplasm resources.
基金the support from the National Natural Science Foundation (No. 52171186)the Science and Technology Commission of Shanghai Municipality under No. 19511108100+1 种基金Shanghai Education Commission “Shuguang” scholar Project (16SG08)the financial support from the Center of Hydrogen Science, Shanghai Jiao Tong University
文摘MgH_(2) has attracted intensive interests as one of the most promising hydrogen storage materials.Nevertheless,the high desorption temperature,sluggish kinetics,and rapid capacity decay hamper its commercial application.Herein,2D TiO_(2) nanosheets with abundant oxygen vacancies are used to fabricate a flower-like MgH_(2)/TiO_(2) heterostructure with enhanced hydrogen storage performances.Particularly,the onset hydrogen desorption temperature of the MgH_(2)/TiO_(2) heterostructure is lowered down to 180℃(295℃ for blank MgH_(2)).The initial desorption rate of MgH_(2)/TiO_(2) reaches 2.116 wt% min^(-1) at 300℃,35 times of the blank MgH_(2) under the same conditions.Moreover,the capacity retention is as high as 98.5% after 100 cycles at 300℃,remarkably higher than those of the previously reported MgH_(2)-TiO_(2) composites.Both in situ HRTEM observations and ex situ XPS analyses confirm that the synergistic effects from multi-valance of Ti species,accelerated electron transportation caused by oxygen vacancies,formation of catalytic Mg-Ti oxides,and stabilized MgH_(2) NPs confined by TiO_(2) nanosheets contribute to the high stability and kinetically accelerated hydrogen storage performances of the composite.The strategy of using 2D substrates with abundant defects to support nano-sized energy storage materials to build heterostructure is therefore promising for the design of high-performance energy materials.
基金supported by the State Key Basic Research and Development Plan of China (973) (2010CB125900, 2009CB118400)the Fundamental Research Funds for Excellent Young Scientists of ICS-CAAS (Grant to Y. G.)+1 种基金the State High-tech Research and Development Program (863 Program) (No. 2012AA101106)the Crop Germplasm Conservation Program (NB2010-2130135-25-05)
文摘The concept of core collection(CC) provides a new way of management and utilization of plant germplasm resources. In this study, an integrated applied core collection(IACC) of soybean was developed based on evaluation data for desirable agronomic and nutritional traits of available soybean germplasm resources including accessions with cold tolerance, drought tolerance, salt tolerance, soybean cyst nematode resistance, soybean mosaic virus resistance, high protein content, and high fat content. The newly formed collection encompasses accessions with high genetic diversity and desirable agronomic traits. The genetic diversity of the newly formed IACC was compared with that of the established mini core collection(MCC) of soybean with the aid of simple sequence repeat(SSR) markers and phenotypic traits. The results showed that at the molecular level, soybean IACC harbored a similar level of genetic diversity as the established MCC, and that at the phenotypic level the IACC encompasses more accessions with desirable traits than does the established MCC. The development of soybean IACC lays a foundation for breeding projects to meet different objectives in different eco-regions.
基金This research was financed by the National Key Research and Development Program of China(2016YFD0100201)the Agricultural Science and Technology Innovation Program(ASTIP)of the Chinese Academy of Agricultural Sciences.
文摘Soybean cyst nematode(SCN,Heterodera glycines Ichinohe)is one of the most economically destructive pathogens.The soybean line Zhongpin03-5373(ZP),which combines resistance genes from several donors,is highly resistant to SCN race 3(SCN3).In our previous study,two QTL(rhg1 and GmSNAP11)were identified in a population of recombinant inbred lines derived from a cross between ZP and the susceptible parent Zhonghuang 13.The two QTL explained around one-third of the resistance,suggesting the presence of further QTL contributing to SCN resistance.In the present study,we used an improved version of the geneticmap comprising the previously applied 1062 molecular markers and 47 newly developed InDel(insertion-deletion)markers.The improved map revealed a novel locus contributing to SCN3 resistance:qSCN3-1,flanked by InDelmarker InDel1-7 and SNPmarker Map-0047,explained 4.55%of the phenotypic variance for resistance to SCN3 and was not involved in digenic epistatic interaction with rhg1 and GmSNAP11.Haplotypes of Map-0047_CAPS(a CAPS marker developed for Map-0047)and InDel1-7 were significantly associated with SCN3 resistance in a panel of 209 resistant and susceptible accessions.Using further allele-combination analysis for three functional markers representing three cloned resistance genes(rhg1,Rhg4,andGmSNAP11)and twomarkers flanking qSCN3-1,we found that adding the resistance allele of qSCN3-1 greatly increased soybean resistance to SCN,even in diverse genetic backgrounds.The qSCN3-1 locus will be useful for marker-assisted polygene pyramid breeding and should be targeted for the future identification of candidate genes.
文摘Objective The aim of this study was to investigate the clinical efficacy of neoadjuvant chemotherapy(NACT) and the prognostic factors for advanced epithelial ovarian cancer(EOC).Methods We enrolled 241 patients with stage III and IV EOC who were diagnosed at the Yunnan Cancer Hospital between October 2006 and December 2015.The observation(NACT-IDS) group(n = 119) received 1–3 courses of platinum-based NACT,followed by interval debulking surgery(IDS) and 6–8 courses of postoperative chemotherapy.The control group underwent primary debulking surgery(PDS)(n = 122) followed by 6–8 courses of postoperative chemotherapy.We analyzed the general conditions of the operations and the survival of both groups.Results Operating time,intraoperative blood loss and postoperative hospitalization were significantly lower in the NACT-IDS group(P < 0.05).The rate of optimal cytoreductive surgery was significantly higher in the NACT-IDS group(P < 0.05).A visible residual lesion was observed in 49(41.18%) and 48(40%) cases in the NACT-IDS and PDS groups,respectively,which were not significantly different(P > 0.05).The percentage of International Federation of Gynecology and Obstetrics(FIGO) stage IV tumors and the recurrence rates were significantly higher in the NACT-IDS group(P < 0.05).The mortality rates were 45.19%(47/104) and 35.19%(38/108) in the NACT-IDS and PDS groups,respectively(P > 0.05).Progression-free survival was 23.75 ± 9.98 and 23.57 ± 12.25 months in the NACT-IDS and PDS groups,respectively(P > 0.05).Overall survival(OS) was 31.11 ± 15.66 and 29.63 ± 18.00 months in the NACTIDS and PDS groups,respectively(P > 0.05).Optimal cytoreductive surgery with or without residual lesion was an independent influencing factor for advanced EOC in multivariate analysis.OS of patients treated with ≥8 courses of chemotherapy was significantly longer than those treated with < 8 courses.Conclusion NACT could improve the intra-and postoperative conditions in advanced EOC patients.Although the percentage of FIGO stage IV cancer was significantly higher in the NACT-IDS group,the prognosis was similar in both the NACT-IDS and PDS groups,suggesting that NACT improves the clinical outcome of advanced EOC.Optimal cytoreductive surgery with no residual lesion is a long-term protective factor in advanced EOC.At least 8 courses of chemotherapy overall or ≥ 6 courses postoperatively improves the OS.
基金the Scientific Research Fund of Hunan Education Department(project no.13B143)Philosophy and Social Science Fund of Hunan Province(project no.13YBB020)
文摘The land ecosystem service function value contains the gas regulating function value, air purification function value, water conservation value, land conser-vation value, soil nutrient conservation value and maintain biodiversity value. Based on the method of market value and the data of Hubei Statistical yearbook, cultivat-ed land resources of ecosystem service function value is 730 038.69Mil ion in 2007-2009, and 714 774.99 Mil ion in 2010-2012 in Wuhan Metropolitan Area. After three years of development, Wuhan Metropolitan Area of ecological value of cultivated land has increased by about 3.97%. From the point of each composition, the im-portance of gas regulating function of cultivated land resources and water conserva-tion function is the forefront. From the point of spatial distribution, the highest of annual average value of the cultivated land ecological was Huanggang (1.725 bil ion yuan), the lowest was Ezhou (217.868 6 mil ion yuan) in 2010-2012. From the point of space changes, the land ecological value increased only in Qianjiang city, while farmland ecological value in other cities was fal ing The conclusion is of direc-tive significance to the regional land protection policy and the farmland reasonable distribution, for Wuhan Metropolitan Area and other areas.
基金supported by the National Basic Research Program(973Program)(2015CB755805)the National Natural Science Foundation of China(61374145)
文摘To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensation method to avoid category II PIOs is investigated. Firstly, the AW compensation method originally used for controlling input magnitude limited system is introduced, then this method is extended for controlling input rate-limiting system through a circle criterion theorem. Secondly, the establishment of the AW compensator is transformed into the solving of linear matrix inequalities. Finally, an AW compensator establishment algorithm for the closed-loop pilot-vehicle system with the rate-limiting actuator is obtained. The effectiveness of the AW compensation method to avoid category II PIOs is validated by time-domain simulations,and compared with rate-limited feedback(RLF) command rate compensation method. The results show that the AW compensation method can effectively suppress category II PIOs and maintain the nominal performance when the closed-loop pilot-vehicle system is normal. Unlike the command rate compensator which works upon system uninterruptedly, the AW compensation method affects the closed-loop pilot-vehicle system only when the rate-limiting of actuator is activated, so it is a novel PIO avoidance method.
基金supported by the National Key Research and Development Program of China(No.2021YFB 3700701)the National Natural Science Foundation of China(Nos.52090041,52022011)+1 种基金the National Major Science and Technology Projects of China(No.J2019-VI-00090123)the Key-area Research and Development Program of Guangdong Province(No.2019b010943001)。
文摘The anisotropy of the structure and properties caused by the strong epitaxial growth of grains during laser powder bed fusion(L-PBF)significantly affects the mechanical performance of Inconel 718 alloy components such as turbine disks.The defects(lack-of-fusion Lo F)in components processed via L-PBF are detrimental to the strength of the alloy.The purpose of this study is to investigate the effect of laser scanning parameters on the epitaxial grain growth and LoF formation in order to obtain the parameter space in which the microstructure is refined and LoF defect is suppressed.The temperature field of the molten pool and the epitaxial grain growth are simulated using a multiscale model combining the finite element method with the phase-field method.The LoF model is proposed to predict the formation of LoF defects resulting from insufficient melting during L-PBF.Defect mitigation and grain-structure control during L-PBF can be realized simultaneously in the model.The simulation shows the input laser energy density for the as-deposited structure with fine grains and without LoF defects varied from 55.0–62.5 J·mm^(-3)when the interlayer rotation angle was 0°–90°.The optimized process parameters(laser power of 280 W,scanning speed of 1160 mm·s^(-1),and rotation angle of 67°)were computationally screened.In these conditions,the average grain size was 7.0μm,and the ultimate tensile strength and yield strength at room temperature were(1111±3)MPa and(820±7)MPa,respectively,which is 8.8%and10.5%higher than those of reported.The results indicating the proposed multiscale computational approach for predicting grain growth and Lo F defects could allow simultaneous grain-structure control and defect mitigation during L-PBF.
基金Project supported by the National Natural Science Foundation of China (No. 12272323)。
文摘Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.
基金Supported by State Key Lab of Mechanical System and Vibration Project of China(Grant No.MSVZD202008).
文摘The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain.However,most of the wheel-legged robots only have one-directional obstacle-crossing ability.During the motion,most of the wheel-legged robots’centroid fluctuates violently,which damages the stability of the load.What’s more,many designs of the obstacle-crossing part and transformation-driving part of this structure are highly coupled,which limits its optimal performance in both aspects.This paper presents a novel wheel-legged robot with a rim-shaped changeable wheel,which has a bi-directional and smooth obstacle-crossing ability.Based on the kinematic model,the geometric parameters of the wheel structure and the design variables of the driving four-bar mechanism are optimized separately.The kinetostatics model of the mobile platform when climbing stairs is established to determine the body length and angular velocity of the driving wheels.A pro-totype is made according to the optimal parameters.Experiments show that the prototype installed with the novel transformable wheels can overcome steps with a height of 1.52 times of its wheel radius with less fluctuation of its centroid and performs good locomotion capabilities in different environments.
基金supported by the National Natural Science Foundation of China(32172002,32070242)Shenzhen Science and Technology Program(KQTD2016113010482651)+1 种基金Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District(RC201901-05,PT201901-19)the USDA Agricultural Research Service Research Participation Program of the Oak Ridge Institute for Science and Education(ORISE)(DE-AC05-06OR23100).
文摘Soybean(Glycine max L.)is a protein and oil crop grown worldwide.Its fitness may be reduced by deleterious mutations,whose identification and purging is desirable for crop breeding.In the published whole-genome re-sequenced data of 2214 soybean accessions,including 221 wild soybean,1132 landrace cultivars and 861 improved soybean lines,we identified 115,275 deleterious single-nucleotide polymorphisms(SNPs).Numbers of deleterious alleles increased from wild soybeans to landraces and decreased from landraces to modern improved lines.Genes in selective-sweep regions showed fewer deleterious mutations than the remaining genes.Deleterious mutations explained 4.3%-48%more phenotypic variation than randomly selected SNPs for resistance to soybean cyst nematode race 2(SCN2),soybean cyst nematode race 3(SCN3)and soybean mosaic virus race 3(SMV3).These findings illustrate how mutation load has shifted during soybean domestication,expansion and improvement and provide candidate sites for breeding out deleterious mutations in soybean by genome editing and/or conventional breeding focused on the selection of progeny with fewer deleterious alleles.