期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Interface and energy band manipulation of Bi2O3-Bi2S3 electrode enabling advanced magnesium-ion storage
1
作者 Qiang Tang yingze song +4 位作者 Xuan Cao Cheng Yang Dong Wang Tingting Qin Wei Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3543-3552,共10页
Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi... Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems. 展开更多
关键词 Magnesium-ion battery Bi2O3-Bi2S3 heterostructure Interface and energy band engineering Electrochemical reaction kinetics Electrode integrity
下载PDF
Recent advances of metal phosphides for Li-S chemistry 被引量:7
2
作者 songlin Yu Wenlong Cai +2 位作者 Le Chen Lixian song yingze song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期533-548,共16页
Li-S batteries have been considered as one of advanced next-generation energy storage systems owing to their remarkable theoretical capacity(1672 m Ah g^(-1))and high energy density(2600 Wh kg^(-1)).However,critical i... Li-S batteries have been considered as one of advanced next-generation energy storage systems owing to their remarkable theoretical capacity(1672 m Ah g^(-1))and high energy density(2600 Wh kg^(-1)).However,critical issues,mainly pertaining to lithium polysulfide shuttle and slow sulfur reaction kinetics,have posed a fatal threat to the electrochemical performances of Li-S batteries.The situation is even worse for high sulfur-loaded and flexible cathodes,which are the essential components for practical Li-S batteries.In response,the use of metal compounds as electrocatalysts in Li-S systems have been confirmed as an effective strategy to date.Particularly,recent years have witnessed many progresses in phosphidesoptimized Li-S chemistry.This has been motivated by the superior electron conductivity and high electrocatalytic activity of phosphides.In this tutorial review,we offer a systematic summary of active metal phosphides as promoters for Li-S chemistry,aiming at helping to understanding the working mechanism of phosphide electrocatalysts and guiding the construction of advanced Li-S batteries. 展开更多
关键词 Metal phosphides Li-S chemistry Polysulfide regulation ELECTROCATALYSIS
下载PDF
Bio-templated formation of defect-abundant VS2 as a bifunctional material toward high-performance hydrogen evolution reactions and lithium-sulfur batteries 被引量:4
3
作者 Tianqi Guo yingze song +7 位作者 Zhongti Sun Yuhan Wu Yu Xia Yayun Li Jianhui Sun Kai Jiang Shixue Dou Jingyu Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期34-42,共9页
Transition metal chalcogenides have nowadays garnered burgeoning interest owing to their fascinating electronic and catalytic properties,thus possessing great implications for energy conversion and storage application... Transition metal chalcogenides have nowadays garnered burgeoning interest owing to their fascinating electronic and catalytic properties,thus possessing great implications for energy conversion and storage applications.In this regard,their controllable synthesis in a large scale at low cost has readily become a focus of research.Herein we report diatomite-template generic and scalable production of VS2 and other transition metal sulfides targeting emerging energy conversion and storage applications.The conformal growth of VS2over diatomite template would endow them with defect-abundant features.Throughout detailed experimental investigation in combination with theoretical simulation,we reveal that the enriched active sites/sulfur vacancies of thus-derived VS2 architectures would pose positive impacts on the catalytic performance such in electrocatalytic hydrogen evolution reactions.We further show that the favorable electrical conductivity and highly exposed sites of VS2 hold promise for serving as sulfur host in the realm of Li-S batteries.Our work offers new insights into the templated and customized synthesis of defect-rich sulfides in a scalable fashion to benefit multifunctional energy applications. 展开更多
关键词 Bio-templated VANADIUM DISULFIDE Defect-abundant Hydrogen evolution reaction Lithium-sulfur BATTERIES
下载PDF
Single-atom electrocatalysts for lithium-sulfur chemistry:Design principle,mechanism,and outlook 被引量:5
4
作者 yingze song Luwei Zou +2 位作者 Chaohui Wei Yu Zhou Yue Hu 《Carbon Energy》 SCIE CSCD 2023年第4期13-41,共29页
Lithium-sulfur batteries(LSBs)have been regarded as one of the promising candidates for the next-generation“lithium-ion battery beyond”owing to their high energy density and due to the low cost of sulfur.However,the... Lithium-sulfur batteries(LSBs)have been regarded as one of the promising candidates for the next-generation“lithium-ion battery beyond”owing to their high energy density and due to the low cost of sulfur.However,the main obstacles encountered in the commercial implementation of LSBs are the notorious shuttle effect,retarded sulfur redox kinetics,and uncontrolled dendrite growth.Accordingly,single-atom catalysts(SACs),which have ultrahigh catalytic efficiency,tunable coordination configuration,and light weight,have shown huge potential in the field of LSBs to date.This review summarizes the recent research progress of SACs applied as multifunctional components in LSBs.The design principles and typical synthetic strategies of SACs toward effective Li–S chemistry as well as the working mechanism promoting sulfur conversion reactions,inhibiting the lithium polysulfide shuttle effect,and regulating Li+nucleation are comprehensively illustrated.Potential future directions in terms of research on SACs for the realization of commercially viable LSBs are also outlined. 展开更多
关键词 design principle lithium-sulfur chemistry MECHANISM single-atom electrocatalyst
下载PDF
Ambiently fostering solid electrolyte interphase for low-temperature lithium metal batteries 被引量:3
5
作者 Jia-Yue Duan Jin-Xiu Chen +7 位作者 Fang-Fang Wang Jin-Hao Zhang Xiao-Zhong Fan Liping Wang yingze song Wei Xia Yusheng Zhao Long Kong 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期473-478,I0012,共7页
Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.U... Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.Unambiguously fingerprinting rate-limited factors of low-temperature LMBs would encourage targeted approaches to promote performances.Herein,the charge transfer impedance across solid electrolyte interphase(SEI) is identified to restrict battery operation under low temperature,and we propose a facile approach on the basis of ambiently fostering SEI(af-SEI) to facilitate charge transfer.The concept of af-SEI stems from kinetic benefits and structural merits to construct SEI at ambient temperature over low temperature developed SEI that is temporally consuming to achieve steady state and that is structurally defective to incur dendrite growth.The af-SEI allows ionically conductive and morphologically uniform layer on the anode surface,which exhibits a lower resistance and induces an even deposition of Li in the subsequent low temperature battery operation.Armed with af-SEI,the LMBs deliver the improved rate performance and prolonged cycle life when subjected to low temperature cycling.This work unveils the underlying causes that limit low temperature LMB performances,and enlightens the facile test protocols to build up favorable SEI,beyond scope of material and morphology design. 展开更多
关键词 Li matel batteries Ambiently fostering SEI Charge transfer impedance Low temperature kinetics
下载PDF
Tunable vacancy defect chemistry on free-standing carbon cathode for lithium-sulfur batteries 被引量:2
6
作者 Xi Zhang Xiaohong Liu +1 位作者 Wei Zhang yingze song 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期354-359,共6页
The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of io... The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of ion/electron-conductive and defect-rich networks on the threedimension carbon cathode,leading to its tunable activity for both relieving the shuttle phenomenon and accelerating the sulfur redox reaction kinetics.As expected,the defective carbon cathode harvests a high rate capacity of 1217.8 mAh g^(-1)at 0.2 C and a superior capacity retention of61.7%at 2 C after 500 cycles.Even under the sulfur mass loading of 11.1 mg cm^(-2),the defective cathode still holds a remarkable areal capacity of 8.5 mAh cm^(-2). 展开更多
关键词 Li–S chemistry Tunable vacancy defects Free-standing cathode Electrocatalytic activity Sulfur redox reaction kinetics
下载PDF
Insight into coupled Ni-Co dual-metal atom catalysts for efficient synergistic electrochemical CO_(2)reduction 被引量:1
7
作者 Qingchun Zhang Di Liu +6 位作者 Yaping Zhang Zhiliang Guo Minpeng Chen Yuyun Chen Bo Jin yingze song Hui Pan 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期509-517,I0013,共10页
The development of highly active,selective,and stable electrocatalysts can facilitate the effective implementation of electrocatalytic CO_(2)conversion into fuels or chemicals for mitigating the energy crisis and clim... The development of highly active,selective,and stable electrocatalysts can facilitate the effective implementation of electrocatalytic CO_(2)conversion into fuels or chemicals for mitigating the energy crisis and climate problems.Therefore,it is necessary to achieve the goal through reasonable material design based on the actuality of the operational active site at the molecular scale.Inspired by the stimulating synergistic effect of coupled heteronuclear metal atoms,a novel Ni-Co atomic pairs configuration(denoted as NiN_(3)?CoN_(3)-NC)active site was theoretically screened out for improving electrochemical CO_(2)reduction reaction(CO_(2)RR).The structure of NiN_(3)?CoN_(3)-NC was finely regulated by adjusting Zn content in the precursors Zn/Co/Ni-zeolite imidazolate frameworks(Zn/Co/Ni-ZIFs)and pyrolysis temperature.The structural features of NiN_(3)?CoN_(3)-NC were systematically confirmed by aberration-corrected HAADF-STEM coupled with 3D atom-overlapping Gaussian-function fitting mapping,XAFS,and XRD.The results of theoretical calculations reveal that the synergistic effect of Ni-Co atomic pairs can effectively promote the*COOH intermediate formation and thus the overall CO_(2)RR kinetic was improved,and also restrained the competitive hydrogen evolution reaction.Due to the attributes of Ni-Co atomic pairs configuration,the developed NiN_(3)?CoN_(3)-NC with superior catalytic activity,selectivity,and durability,with a high turnover frequency of 2265 h^(-1)at-1.1 V(vs.RHE)and maximum Faradaic efficiency of 97.7%for CO production.This work demonstrates the great potential of DACs as highly efficient catalysts for CO_(2)RR,provides a useful strategy to design heteronuclear DACs,exploits the synergistic effect of multiple metal sites to facilitate complex CO_(2)RR catalytic reactions,and inspires more efforts to develop the potential of DACs in various fields. 展开更多
关键词 Coupled dual-metal atom catalysts CO_(2)reduction reaction Electrocatalysts Density functional theory
下载PDF
Double-layered skeleton of Li alloy anchored on 3D metal foam enabling ultralong lifespan of Li anode under high rate
8
作者 Chaohui Wei Zeyu Yao +7 位作者 Jin Ruan Zhicui song Aijun Zhou yingze song Donghuang Wang Jicheng Jiang Xin Wang Jingze Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期479-485,共7页
The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimenta... The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimental issues,such as dendritic growth and volume expansion,have hindered the practical implementation of LMBs.Introducing three-dimensional frameworks(e.g.,copper and nickel foam),have been regarded as one of the fundamental strategies to reduce the local current density,aiming to extend the Sand'time.Nevertheless,the local environment far from the skeleton is almost the same as the typical plane Li,due to macroporous space of metal foam.Herein,we built a double-layered 3D current collector of Li alloy anchored on the metal foam,with micropores interconnected macropores,via a viable thermal infiltration and cooling strategy.Due to the excellent electronic and ionic conductivity coupled with favorable lithiophilicity,the Li alloy can effectively reduce the nucleation barrier and enhance the Li^(+)transportation rate,while the metal foam can role as the primary promotor to enlarge the surface area and buffer the dimensional variation.Synergistically,the Li composite anode with hierarchical structure of primary and secondary scaffolds realized the even deposition behavior and minimum volume expansion,outputting preeminent prolonged cycling performances under high rate. 展开更多
关键词 Double-layered skeleton Li alloy 3D Metal foam Ultralong lifespan Lithium metal batteries High rate
原文传递
Chemical vapor deposition making better lithium-sulfur batteries
9
作者 yingze song Lixian song +1 位作者 Menglei Wang Wenlong Cai 《Science Bulletin》 SCIE EI CAS CSCD 2024年第13期2013-2016,共4页
The burgeoning demand for modern electronic devices and electric vehicles has driven the development of efficient,reliable,and environmentally friendly batteries[1,2].Lithium–sulfur(Li–S)batteries with high theoreti... The burgeoning demand for modern electronic devices and electric vehicles has driven the development of efficient,reliable,and environmentally friendly batteries[1,2].Lithium–sulfur(Li–S)batteries with high theoretical capacity(1672 mA h g1)and energy density(2600 W h kg1),have garnered significant interest in both academic and industrial research[3,4].However,the widespread production and commercialization of Li–S batteries are impeded by the inherent characteristics of sulfur and lithium,along with their complex electrochemical behaviors.Notably,challenges such as the polysulfide shuttle effect and the slow kinetics of the sulfur nucleation/decomposition reaction hinder capacity utilization and cycling stability.To overcome these challenges,innovative electrocatalyst strategies aimed at enhancing activity have been explored. 展开更多
关键词 LITHIUM OVERCOME CYCLING
原文传递
Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage 被引量:8
10
作者 Chen Lu Zhenzhu Li +8 位作者 Zhou Xia Haina Ci Jingsheng Cai yingze song Lianghao Yu Wanjian Yin Shixue Dou Jingyu Sun Zhongfan Liu 《Nano Research》 SCIE EI CAS CSCD 2019年第12期3051-3058,共8页
Tin-based compounds are deemed as suitable anode candidates affording promising sodium-ion storages for rechargeable batteries andhybrid capacitors.However,synergistically tailoring the electrical conductivity and str... Tin-based compounds are deemed as suitable anode candidates affording promising sodium-ion storages for rechargeable batteries andhybrid capacitors.However,synergistically tailoring the electrical conductivity and structural stability of tin-based anodes to attain durablesodium-ion storages remains challenging to date for its practical applications.Herein,metal-organic framework(MOF)derived SnSe/C wrappedwithin nitrogen-doped graphene(NG@SnSe/C)is designed targeting durable sodium-ion storage.NG@SnSe/C possesses favorable electricalconductivity and structure stability due to the"inner"carbon framework from the MOF thermal treatment and"outer"graphitic cage from thedirect chemical vapor deposition synthesis.Consequently,NG@SnSe/C electrode can obtain a high reversible capacity of 650 mAh·g^-1 at 0.05 A·g^1,a favorable rate performance of 287.8 mAh·g^1 at 5 A·g^1 and a superior cycle stability with a negligible capacity decay of 0.016%percycle over 3,200 cycles at 0.4 A·g^1.Theoretical calculations reveal that the nitrogen-doping in graphene can stabilize the NG@SnSe/Cstructure and improve the electrical conductivity.The reversible Na-ion storage mechanism of SnSe is further investigated by in-situ X-raydiffraction/ex-s/tu transmission electron microscopy.Furthermore,assembled sodium-ion hybrid capacitor full-cells comprising our NG@SnSe/Canode and an active carbon cathode harvest a high energy/power density of 115.5 Wh·kg^-1/5,742 W·kg^-1,holding promise for next-generationen ergy storages. 展开更多
关键词 SnSe nitrogervdoped GRAPHENE plasma-enhanced chemical vapor deposition conductivity sodium-ion STORAGE
原文传递
All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring 被引量:6
11
作者 Lianghao Yu Yuyang Yi +10 位作者 Ting Yao yingze song Yiran Chen Qiucheng Li Zhou Xia Nan Wei Zhengnan Tian Baoqing Nie Li Zhang Zhongfan Liu Jingyu Sun 《Nano Research》 SCIE EI CAS CSCD 2019年第2期331-338,共8页
The booming of wearable electronics has nourished the progress on developing multifunctional energy storage systems with versatile flexibility, which enable the continuous and steady power supply even under various de... The booming of wearable electronics has nourished the progress on developing multifunctional energy storage systems with versatile flexibility, which enable the continuous and steady power supply even under various deformed states. In this sense, the synergy of flexible energy and electronic devices to construct integrative wearable microsystems is meaningful but remains quite challenging by far. Herein, we devise an innovative supercapacitor/sensor integrative wearable device that is based upon our designed vanadium nitride-graphene (VN-G) architectures. Flexible quasi-solid-state VN-G supercapacitor with ultralight and binder-free features deliver a specific capacitance of^53 F·g^-1 with good cycle stability. On the other hand, VN-G derived pressure sensors fabricated throughout a spray-printing process also manifest favorably high sensitivity (40 kPa^-1 at the range of 2-10 kPa), fast response time (~130 ms), perfect skin conformability, and outstanding stability under static and dynamic pressure conditions. In tum, their complementary unity into a self-powered wearable sensor enables the precise detecti on of physiological motions ranging from pulse rate to phonetic recognition, holding promise for in-practical health monitoring applications. 展开更多
关键词 VN-graphene ARCHITECTURE solid-state supercapacitor pressure SENSOR SELF-POWERED wearable SENSOR health monitoring
原文传递
Defect engineering on carbon black for accelerated Li-S chemistry 被引量:7
12
作者 Wenlong Cai yingze song +5 位作者 Yuting Fang Weiwei Wang songlin Yu Huaisheng Ao Yongchun Zhu Yitai Qian 《Nano Research》 SCIE EI CAS CSCD 2020年第12期3315-3320,共6页
Rationally designing sulfur hosts with the functions of confining lithium polysulfides(LiPSs)and promoting sulfur reaction kinetics is critically important to the real implementation of lithium-sulfur(Li-S)batteries.H... Rationally designing sulfur hosts with the functions of confining lithium polysulfides(LiPSs)and promoting sulfur reaction kinetics is critically important to the real implementation of lithium-sulfur(Li-S)batteries.Herein,the defect-rich carbon black(CB)as sulfur host was successfully constructed through a rationally regulated defect engineering.Thus-obtained defect-rich CB can act as an active electrocatalyst to enable the sulfur redox reaction kinetics,which could be regarded as effective inhibitor to alleviate the LiPS shuttle.As expected,the cathode consisting of sulfur and defect-rich CB presents a high rate capacity of 783.8 mA·h·g^−1 at 4 C and a low capacity decay of only 0.07% per cycle at 2 C over 500 cycles,showing favorable electrochemical performances.The strategy in this investigation paves a promising way to the design of active electrocatalysts for realizing commercially viable Li-S batteries. 展开更多
关键词 Li-S chemistry defect engineering carbon black sulfur reaction kinetics
原文传递
Bidirectionally polarizing surface chemistry of heteroatom-doped carbon matrix towards fast and longevous lithium-sulfur batteries
13
作者 Hongyang Li Bo Cai +2 位作者 yingze song Wenlong Cai Gaoran Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期313-317,共5页
Herein, a bidirectional polarization strategy is proposed for hosting efficient and durable lithium-sulfur battery(Li-S) electrochemistry. By co-doping electronegative N and electropositive B in graphene matrix(BNrGO)... Herein, a bidirectional polarization strategy is proposed for hosting efficient and durable lithium-sulfur battery(Li-S) electrochemistry. By co-doping electronegative N and electropositive B in graphene matrix(BNrGO), the bidirectional electron redistribution enables a higher polysulfide affinity over its monodoped counterparts, contributing to strong sulfur immobilization and fast conversion kinetics. As a result,BNrGO as the cathode host matrix realizes excellent cycling stability over 1000 cycles with a minimum capacity fading of 0.027% per cycle, and superb rate capability up to 10 C. Meanwhile, decent areal capacity(6.46 m Ah/cm^(2)) and cyclability(300 cycles) are also achievable under high sulfur loading and limited electrolyte. This work provides instructive insights into the interaction between doping engineering and sulfur electrochemistry for pursuing superior Li-S batteries. 展开更多
关键词 Lithium-sulfur battery Facile synthesis Heteroatom doping Bidirectional polarization Shuttle effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部