Cancer has long been amajor threat to human health.Recent advancements inmolecular imaging have revolutionized cancer research by enabling early and precise disease localization,essential for effective management.In p...Cancer has long been amajor threat to human health.Recent advancements inmolecular imaging have revolutionized cancer research by enabling early and precise disease localization,essential for effective management.In particular,optical molecular imaging is an invaluable cancer detection tool in preoperative planning,intraoperative guidance,and postoperative monitoring owing to its noninvasive nature,rapid turnover,safety,and ease of use.The tumor microenvironment and cells within it express distinct biomarkers.Optical imaging technology leverages these markers to differentiate tumor tissues from surrounding tissues and capture real-time images with high resolution.Nevertheless,a robust understanding of these cancer-relatedmolecules and their dynamic changes is crucial for effectivelymanaging cancer.Recent advancements in opticalmolecular imaging technologies offer novel approaches for cancer investigation in research and practice.This review investigates themodern opticalmolecular imaging techniques employed in both preclinical and clinical research,including bioluminescence,fluorescence,chemiluminescence,photoacoustic imaging,and Raman spectroscopy.We explore the current paradigm of optical molecular imaging modalities,their current status in preclinical cancer research and clinical applications,and future perspectives in the fields of cancer research and treatment.展开更多
The implementation of a robust artificial solid electrolyte interphase(ASEI)to replace the unstable natural SEI can regulate lithium deposition behaviors and avoid the safety hazards caused by dendrites permeation in ...The implementation of a robust artificial solid electrolyte interphase(ASEI)to replace the unstable natural SEI can regulate lithium deposition behaviors and avoid the safety hazards caused by dendrites permeation in lithium metal batteries.Despite of devoted efforts in tailoring components of ASEI,the intrinsic mechanism of interfacial synergy within the heterogeneous interphases has not been well elucidated yet.Herein,we show that the lithium plating/striping behaviors can be substantially enhanced(over 900 h with an overpotential of less than 20 mV at 1 mA·cm^(−2)in Li|Li symmetric cells and 146 cycles in anode-free cells)by regulating the heterogeneous interphases.This favorable ASEI composed of LiF and Li_(3)N components can be in-situ generated during cycling by large-scale fabricated fluorinated boron nitride coatings.Further,the synergy of each heterogeneous component within ASEI was explored theoretically and experimentally.Li_(3)N has high adsorption energy and low ion diffusion barrier,which facilitates the transport of lithium ions and avoids its local accumulation to evolve into dendrites.Both the substrate and LiF are interfacially stable with high electron tunneling barriers,preventing the electrolyte decomposition and parasitic reactions.Finally,the high stiffness of the boron nitride also ensures lithium dendrites are suppressed once they grow,providing a stable environment for long-term cycling of lithium metal batteries.展开更多
Macrophages are among the most abundant immune cells in colorectal cancer (CRC). Re-educating tumor-associated macrophages (TAMs) to switch from protumoral to anti-tumoral activity is an attractive treatment strategy ...Macrophages are among the most abundant immune cells in colorectal cancer (CRC). Re-educating tumor-associated macrophages (TAMs) to switch from protumoral to anti-tumoral activity is an attractive treatment strategy that warrants further investigation. However, little is known about the key pathway that is activated in TAMs. In this study, infitrating CD206^(+) TAMs in CRC were sorted and subjected to RNA-seq analysis. Differentially expressed genes were found to be enriched in unfolded protein response/endoplasmic reticulum stress response processes, and XBP1 splicing/activation was specifically observed in TAMs. XBP1 activation in TAMs promoted the growth and metastasis of CRC. Ablation of XBP1 inhibited the expression of the pro-tumor cytokine signature of TAMs, including IL-6, VEGFA, and IL-4. Simultaneously, XBP1 depletion could directly inhibit the expression of SIRPα and THBS1, thereby blocking “don’t eat me” recognition signals and enhancing phagocytosis. Therapeutic XBP1 gene editing using AAV2-sgXBP1 enhanced the anti-tumor activity. Together, XBP1 activation in TAMs drives CRC progression by elevating pro-tumor cytokine expression and secretion, as well as inhibiting macrophage phagocytosis. Targeting XBP1 signaling in TAMs may be a potential strategy for CRC therapy.展开更多
基金supported by the National Key R&D Program(the 14th Five-Year Plan)(no.2023YFC2706001 and no.2023YFC2706003).
文摘Cancer has long been amajor threat to human health.Recent advancements inmolecular imaging have revolutionized cancer research by enabling early and precise disease localization,essential for effective management.In particular,optical molecular imaging is an invaluable cancer detection tool in preoperative planning,intraoperative guidance,and postoperative monitoring owing to its noninvasive nature,rapid turnover,safety,and ease of use.The tumor microenvironment and cells within it express distinct biomarkers.Optical imaging technology leverages these markers to differentiate tumor tissues from surrounding tissues and capture real-time images with high resolution.Nevertheless,a robust understanding of these cancer-relatedmolecules and their dynamic changes is crucial for effectivelymanaging cancer.Recent advancements in opticalmolecular imaging technologies offer novel approaches for cancer investigation in research and practice.This review investigates themodern opticalmolecular imaging techniques employed in both preclinical and clinical research,including bioluminescence,fluorescence,chemiluminescence,photoacoustic imaging,and Raman spectroscopy.We explore the current paradigm of optical molecular imaging modalities,their current status in preclinical cancer research and clinical applications,and future perspectives in the fields of cancer research and treatment.
基金supported by the National Natural Science Foundation of China(Nos.52003038 and 52192610)Startup funds of Yangtze Delta Region Institute(Huzhou),University of Electronic Science and Technology of China(No.U03210019).
文摘The implementation of a robust artificial solid electrolyte interphase(ASEI)to replace the unstable natural SEI can regulate lithium deposition behaviors and avoid the safety hazards caused by dendrites permeation in lithium metal batteries.Despite of devoted efforts in tailoring components of ASEI,the intrinsic mechanism of interfacial synergy within the heterogeneous interphases has not been well elucidated yet.Herein,we show that the lithium plating/striping behaviors can be substantially enhanced(over 900 h with an overpotential of less than 20 mV at 1 mA·cm^(−2)in Li|Li symmetric cells and 146 cycles in anode-free cells)by regulating the heterogeneous interphases.This favorable ASEI composed of LiF and Li_(3)N components can be in-situ generated during cycling by large-scale fabricated fluorinated boron nitride coatings.Further,the synergy of each heterogeneous component within ASEI was explored theoretically and experimentally.Li_(3)N has high adsorption energy and low ion diffusion barrier,which facilitates the transport of lithium ions and avoids its local accumulation to evolve into dendrites.Both the substrate and LiF are interfacially stable with high electron tunneling barriers,preventing the electrolyte decomposition and parasitic reactions.Finally,the high stiffness of the boron nitride also ensures lithium dendrites are suppressed once they grow,providing a stable environment for long-term cycling of lithium metal batteries.
基金This work was supported by the National Natural Science Foundation of China(81772638 and 81903025)CAMS Innovation Fund for Medical Sciences(2016-I2M-1-001).
文摘Macrophages are among the most abundant immune cells in colorectal cancer (CRC). Re-educating tumor-associated macrophages (TAMs) to switch from protumoral to anti-tumoral activity is an attractive treatment strategy that warrants further investigation. However, little is known about the key pathway that is activated in TAMs. In this study, infitrating CD206^(+) TAMs in CRC were sorted and subjected to RNA-seq analysis. Differentially expressed genes were found to be enriched in unfolded protein response/endoplasmic reticulum stress response processes, and XBP1 splicing/activation was specifically observed in TAMs. XBP1 activation in TAMs promoted the growth and metastasis of CRC. Ablation of XBP1 inhibited the expression of the pro-tumor cytokine signature of TAMs, including IL-6, VEGFA, and IL-4. Simultaneously, XBP1 depletion could directly inhibit the expression of SIRPα and THBS1, thereby blocking “don’t eat me” recognition signals and enhancing phagocytosis. Therapeutic XBP1 gene editing using AAV2-sgXBP1 enhanced the anti-tumor activity. Together, XBP1 activation in TAMs drives CRC progression by elevating pro-tumor cytokine expression and secretion, as well as inhibiting macrophage phagocytosis. Targeting XBP1 signaling in TAMs may be a potential strategy for CRC therapy.