In machinery fault diagnosis,labeled data are always difficult or even impossible to obtain.Transfer learning can leverage related fault diagnosis knowledge from fully labeled source domain to enhance the fault diagno...In machinery fault diagnosis,labeled data are always difficult or even impossible to obtain.Transfer learning can leverage related fault diagnosis knowledge from fully labeled source domain to enhance the fault diagnosis performance in sparsely labeled or unlabeled target domain,which has been widely used for cross domain fault diagnosis.However,existing methods focus on either marginal distribution adaptation(MDA)or conditional distribution adaptation(CDA).In practice,marginal and conditional distributions discrepancies both have significant but different influences on the domain divergence.In this paper,a dynamic distribution adaptation based transfer network(DDATN)is proposed for cross domain bearing fault diagnosis.DDATN utilizes the proposed instance-weighted dynamic maximum mean discrepancy(IDMMD)for dynamic distribution adaptation(DDA),which can dynamically estimate the influences of marginal and conditional distribution and adapt target domain with source domain.The experimental evaluation on cross domain bearing fault diagnosis demonstrates that DDATN can outperformance the state-of-the-art cross domain fault diagnosis methods.展开更多
One of the core challenges of intelligent fault diagnosis is that the diagnosis model requires numerous labeled training datasets to achieve satisfactory performance.Generating training data using a virtual model is a...One of the core challenges of intelligent fault diagnosis is that the diagnosis model requires numerous labeled training datasets to achieve satisfactory performance.Generating training data using a virtual model is a potential solution for addressing such a problem,and the construction of a high-fidelity virtual model is fundamental and critical for data generation.In this study,a digital twin-assisted dynamic model updating method for fault diagnosis is thus proposed to improve the fidelity and reliability of a virtual model,which can enhance the generated data quality.First,a virtual model is established to mirror the vibration response of a physical entity using a dynamic modeling method.Second,the modeling method is validated through a frequency analysis of the generated signal.Then,based on the signal similarity indicator,a physical–virtual signal interaction method is proposed to dynamically update the virtual model in which parameter sensitivity analysis,surrogate technique,and optimization algorithm are applied to increase the efficiency during the model updating.Finally,the proposed method is successfully applied to the dynamic model updating of a single-stage helical gearbox;the virtual data generated by this model can be used for gear fault diagnosis.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51875208,51475170)National Key Research and Development Program of China(Grant No.2018YFB1702400).
文摘In machinery fault diagnosis,labeled data are always difficult or even impossible to obtain.Transfer learning can leverage related fault diagnosis knowledge from fully labeled source domain to enhance the fault diagnosis performance in sparsely labeled or unlabeled target domain,which has been widely used for cross domain fault diagnosis.However,existing methods focus on either marginal distribution adaptation(MDA)or conditional distribution adaptation(CDA).In practice,marginal and conditional distributions discrepancies both have significant but different influences on the domain divergence.In this paper,a dynamic distribution adaptation based transfer network(DDATN)is proposed for cross domain bearing fault diagnosis.DDATN utilizes the proposed instance-weighted dynamic maximum mean discrepancy(IDMMD)for dynamic distribution adaptation(DDA),which can dynamically estimate the influences of marginal and conditional distribution and adapt target domain with source domain.The experimental evaluation on cross domain bearing fault diagnosis demonstrates that DDATN can outperformance the state-of-the-art cross domain fault diagnosis methods.
基金supported in part by the National Key R&D Program of China(Grant No.2018YFB1702400)the National Natural Science Foundation of China(Grant Nos.52275111,52205100,and 52205101)the Guangdong Basic and Applied Basic Research Foundation,China(Grant Nos.2021A1515110708 and 2023A1515012856).
文摘One of the core challenges of intelligent fault diagnosis is that the diagnosis model requires numerous labeled training datasets to achieve satisfactory performance.Generating training data using a virtual model is a potential solution for addressing such a problem,and the construction of a high-fidelity virtual model is fundamental and critical for data generation.In this study,a digital twin-assisted dynamic model updating method for fault diagnosis is thus proposed to improve the fidelity and reliability of a virtual model,which can enhance the generated data quality.First,a virtual model is established to mirror the vibration response of a physical entity using a dynamic modeling method.Second,the modeling method is validated through a frequency analysis of the generated signal.Then,based on the signal similarity indicator,a physical–virtual signal interaction method is proposed to dynamically update the virtual model in which parameter sensitivity analysis,surrogate technique,and optimization algorithm are applied to increase the efficiency during the model updating.Finally,the proposed method is successfully applied to the dynamic model updating of a single-stage helical gearbox;the virtual data generated by this model can be used for gear fault diagnosis.