BACKGROUND Diabetic foot ulcers(DFUs)are one of the most severe and popular complications of diabetes.The persistent non-healing of DFUs is the leading cause of amputation,which causes significant mental and financial...BACKGROUND Diabetic foot ulcers(DFUs)are one of the most severe and popular complications of diabetes.The persistent non-healing of DFUs is the leading cause of amputation,which causes significant mental and financial stress to patients and their families.Macrophages are critical cells in wound healing and perform essential roles in all phases of wound healing.However,no studies have been carried out to systematically illustrate this area from a scientometric point of view.Although there have been some bibliometric studies on diabetes,reports focusing on the investigation of macrophages in DFUs are lacking.AIM To perform a bibliometric analysis to systematically assess the current state of research on macrophage-related DFUs.METHODS The publications of macrophage-related DFUs from January 1,2004,to December 31,2023,were retrieved from the Web of Science Core Collection on January 9,2024.Four different analytical tools:VOSviewer(v1.6.19),CiteSpace(v6.2.R4),HistCite(v12.03.07),and Excel 2021 were used for the scientometric research.RESULTS A total of 330 articles on macrophage-related DFUs were retrieved.The most published countries,institutions,journals,and authors in this field were China,Shanghai Jiao Tong University of China,Wound Repair and Regeneration,and Aristidis Veves.Through the analysis of keyword co-occurrence networks,historical direct citation networks,thematic maps,and trend topics maps,we synthesized the prevailing research hotspots and emerging trends in this field.CONCLUSION Our bibliometric analysis provides a comprehensive overview of macrophage-related DFUs research and insights into promising upcoming research.展开更多
BACKGROUND: Traumatic approaches, such as sacrifice and perfusion sampling, have been used to evaluate efficiency of stem cell transplantation. However, these methods are not applicable to human studies. Cell tracing...BACKGROUND: Traumatic approaches, such as sacrifice and perfusion sampling, have been used to evaluate efficiency of stem cell transplantation. However, these methods are not applicable to human studies. Cell tracing, in combination with non-invasive imaging technology, can be utilized to trace cell survival following transplantation to evaluate the efficacy of cell transplantation therapy. OBJECTIVE: To explore feasibility of magnetic resonance imaging (MRI) to observe in vivo repair of injured sciatic nerves following feridex and polylysine (FE-PLL) complex-labeled bone marrow stromal cell (BMSC) transplantation. DESIGN, TIME AND SE'I-rlNG: A randomized, controlled, animal experiment was performed at the Laboratory of the Department of Neurosurgery, Zhujiang Hospital from March to December 2008. MATERIALS: Feridex was purchased from Advanced Magnetic, USA, and polylysine was purchased from Sigma, USA. METHODS: BMSCs were harvested from adult rabbit femurs and were cultured in vitro with neural stem cell culture medium, leukemia inhibitory factor, and basic fibroblast growth factor. Bone marrow stromal cell-derived neural stem cells (BMSC-D-NSCs) were obtained and labeled with FE-PLL complex. The right sciatic nerve (0.8 mm) was excised from healthy, New Zealand rabbits, aged 1.5 months, and the epineuria of distal stumps underwent turnover and were anastomosed at the proximal ends. FE-PLL labeled BMSC-D-NSC suspension or culture medium was transplanted into the epineunal lumen using a microsyringe. The left sciatic nerve was left intact and sewed as the normal control. MAIN OUTCOME MEASURES: Cellular morphology, proliferation, and differentiation, as well as expression of nestin and neuron-specific enolase (NSE), of BMSCs-D-NSCs were observed. Efficacy of FE-PLL labeling and effects on cells were measured. In addition, neural regeneration at 2, 8, and 16 weeks following transplantation was observed by MRI. Histopathology and mean number of regenerated nerve fibers in the proximodistal-injured sciatic nerve were evaluated by hematoxylin and eosin and Bielschowsky staining. RESULTS: Results demonstrated that BMSCs expanded, proliferated, and differentiated into neural-like cells with slim, long processes. The cells expressed nestin and NSE, as detected by immunocytochemistry. BMSC-D-NSCs were effectively labeled by FE-PLL, with a labeling efficiency of 98%. In addition, cell viability was not influenced by the FE-PLL complex. MRI results revealed low signals in the FE-labeled BMSC-D-NSC-implanted region of the sciatic nerve. A low-signal region was observed at 2 weeks, which was widely spread at 8-16 weeks after cell transplantation. The regenerated nerve fibers were orderly arranged in the cell transplantation group and exhibited no significant differences compared with the normal control side (P 〉 0.05). CONCLUSION: BMSCs were successfully cultured in vitro, and the cells proliferated and trans-differentiated into neuronal-like cells, which expressed nestin and NSE. The FE-PLL complex effectively labeled rabbit BMSC-D-NSCs in vitro and did not affect peripheral neural regeneration following cell transplantation. Results demonstrated that MRI could be used to track FE-labeled BMSC-D-NSCs transplanted in the sciatic nerve.展开更多
Shape memory photonic crystals(SMPCs)are smart composite materials with changeable structural color integrated by shape memory polymer and photonic crystals.SMPC can produce one or more temporary shapes through nanosc...Shape memory photonic crystals(SMPCs)are smart composite materials with changeable structural color integrated by shape memory polymer and photonic crystals.SMPC can produce one or more temporary shapes through nanoscale deformation,memorizing current states.SMPC can be recovered to their original shapes or some intermediate states under external stimuli,accompanied by the variation of structural color.As porous carriers with built-in sensing properties,SMPCs promoted the interdisciplinary development of nanophotonic technology in materials science,environmental engineering,biomedicine,chemical engineering,and mechanics.Herein,the recent progress on multifunctional SMPCs and practical applications,including traditional and cold programmable SMPCs,is summarized and discussed.The primary concern is shape programming at the nanoscale that has demonstrated numerous attractive functions,including smart sensing,ink-free printing,solvent detection,reprogrammable gradient wetting,and controllable bubble transportation,under variations of the surface nanostructure.It aims to figure out the nanoscale shape memory effects on structural color conversion and additional performance,inspiring the fabrication of the next generation of SMPCs.Finally,perspectives on future research directions and applications are also presented.It is believed that multifunctional SMPCs are powerful nanophotonic tools for the interdisciplinary development of numerous disciplines in the future.展开更多
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV). Predicting the incidence of this disease in advance is crucial for policymakers to develop prevent...Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV). Predicting the incidence of this disease in advance is crucial for policymakers to develop prevention and control strategies. In this study, we utilized historical incidence data of SFTS (2013–2020) in Shandong Province, China to establish three univariate prediction models based on two time-series forecasting algorithms Autoregressive Integrated Moving Average (ARIMA) and Prophet, as well as a special type of recurrent neural network Long Short-Term Memory (LSTM) algorithm. We then evaluated and compared the performance of these models. All three models demonstrated good predictive capabilities for SFTS cases, with the predicted results closely aligning with the actual cases. Among the models, the LSTM model exhibited the best fitting and prediction performance. It achieved the lowest values for mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). The number of SFTS cases in the subsequent 5 years in this area were also generated using this model. The LSTM model, being simple and practical, provides valuable information and data for assessing the potential risk of SFTS in advance. This information is crucial for the development of early warning systems and the formulation of effective prevention and control measures for SFTS.展开更多
In order to better realize the energy recovery and storage of hybrid EVs(HEVs),a switched reluctance starter/generator(SRS/G)with both starting and power generation functions is investigated in this paper.First,the ir...In order to better realize the energy recovery and storage of hybrid EVs(HEVs),a switched reluctance starter/generator(SRS/G)with both starting and power generation functions is investigated in this paper.First,the iron loss of SRS/G is mainly studied to reduce the motor loss and improve the power generation efficiency.Then,the energy storage of hybrid EVs can be effectively improved.Secondly,a magnetic flux density(MFD)waveforms solution method is proposed to solve the difficulty in calculating the iron loss of the SRS/G.Compared with the commonly used finite element method,the proposed solution method has the advantages of simple,fast and small computational amount.Meanwhile,considering the different operating conditions of SRS/G,the iron loss models for both the time-domain and frequency-domain are established.In addition,the calculation formula of the variable coefficient Bertotti three-term loss separation is improved.As the hysteresis loss coefficient,the Steinmetz coefficient and the stray loss coefficient are respectively fitted by the Fourier fitting method.This method is also applied to solve the iron loss of SRS/G.Finally,through an experimental verification,it is indicated that the development of proposed method has high accuracy.展开更多
Introduction:Severe fever with thrombocytopenia syndrome(SFTS)is an emerging infectious disease caused by the SFTS virus,which has a high mortality rate.Predicting the number of SFTS cases is essential for early outbr...Introduction:Severe fever with thrombocytopenia syndrome(SFTS)is an emerging infectious disease caused by the SFTS virus,which has a high mortality rate.Predicting the number of SFTS cases is essential for early outbreak warning and can offer valuable insights for establishing prevention and control measures.Methods:In this study,data on monthly SFTS cases in Hubei Province,China,from 2013 to 2020 were collected.Various time series models based on seasonal auto-regressive integrated moving average(SARIMA),Prophet,eXtreme Gradient Boosting(XGBoost),and long short-term memory(LSTM)were developed using these historical data to predict SFTS cases.The established models were evaluated and compared using mean absolute error(MAE)and root mean squared error(RMSE).Results:Four models were developed and performed well in predicting the trend of SFTS cases.The XGBoost model outperformed the others,yielding the closest fit to the actual case numbers and exhibiting the smallest MAE(2.54)and RMSE(2.89)in capturing the seasonal trend and predicting the monthly number of SFTS cases in Hubei Province.Conclusion:The developed XGBoost model represents a promising and valuable tool for SFTS prediction and early warning in Hubei Province,China.展开更多
Low-swelling polymers(LSPs)generally refer to materials with a low solvent absorption ratio or volume expansion rate at swelling equilibrium.LSPs with exceptional responsiveness could be upgraded to smart sensors with...Low-swelling polymers(LSPs)generally refer to materials with a low solvent absorption ratio or volume expansion rate at swelling equilibrium.LSPs with exceptional responsiveness could be upgraded to smart sensors with structural color self-reporting by bridging photonic crystals(PCs).Based on the regulation of swelling to effective refractive index,lattice spacing,the order-disorder arrangement of nanostructures,and incident/detection angle,the structural color feedback of smart photonic crystal sensors(SPCSs)can quantitatively and visually reveal the stimulus,which greatly promotes the interdisciplinary development of nanophotonic technology in the fields of chemical engineering,materials science,engineering mechanics,biomedicine,environmental engineering,etc.Herein,to clarify the role of the photonic structures and polymer molecules in highperformance SPCSs,LSP-based SPCSs are summarized and discussed,including general swelling mechanisms,color change strategies,structural design,and typical functional applications.It aims to figure out the combination rule between PC structures and LSPs,optimize the design of PC structures,and expound the corresponding structural color sensing mechanisms,inspiring the fabrication of next-generation SPCSs.Finally,perspectives on future structural design and sensing applications are also presented.It is believed that SPCSs are multifunctional nanophotonic tools for the interdisciplinary development of numerous engineering fields in the future.展开更多
Chronic diabetic wound healing remains a formidable challenge due to susceptibility to bacterial infection,excessive oxidative stress,and poor angiogenesis.To address these issues,a sodium alginate(SA)based phototherm...Chronic diabetic wound healing remains a formidable challenge due to susceptibility to bacterial infection,excessive oxidative stress,and poor angiogenesis.To address these issues,a sodium alginate(SA)based photothermal hydrogel dressing with multifunction was fabricated to facilitate wound treatment.Ceria nanoparticles(CeO_(2)NPs)was synthesized,and their antibacterial performance by near-infrared light triggered photothermal effects was first studied and verified in this work.In addition,to release CeO_(2)NPs to achieve antioxidation and pro-vascularization,thermosensitive gelatin(Gel)was utilized to embed the nanoparticles in advance and then composited in SA hydrogel networks.SA network was finally strengthened by acid soaking to form partially crystalline regions to act as natural crosslinkers.Results showed that the Gel/SA/CeO_(2)hydrogel displayed temperature-responsive release of CeO_(2)NPs,significant antibacterial and antioxidative activity,as well as the ability to remove without injury and promote infected diabetic wound healing with low cytotoxicity,according to antibacterial investigations,cell studies,and in vivo animal studies.This research offers not only a successful method for quickening the healing of diabetic wounds but also a fresh approach to the general use of CeO_(2)NPs.展开更多
基金Supported by the Science and Technology Planning Project of Guangzhou,No.2024A03J1132the Foundation of Guangdong Provincial Medical Science and Technology,No.B2024038.
文摘BACKGROUND Diabetic foot ulcers(DFUs)are one of the most severe and popular complications of diabetes.The persistent non-healing of DFUs is the leading cause of amputation,which causes significant mental and financial stress to patients and their families.Macrophages are critical cells in wound healing and perform essential roles in all phases of wound healing.However,no studies have been carried out to systematically illustrate this area from a scientometric point of view.Although there have been some bibliometric studies on diabetes,reports focusing on the investigation of macrophages in DFUs are lacking.AIM To perform a bibliometric analysis to systematically assess the current state of research on macrophage-related DFUs.METHODS The publications of macrophage-related DFUs from January 1,2004,to December 31,2023,were retrieved from the Web of Science Core Collection on January 9,2024.Four different analytical tools:VOSviewer(v1.6.19),CiteSpace(v6.2.R4),HistCite(v12.03.07),and Excel 2021 were used for the scientometric research.RESULTS A total of 330 articles on macrophage-related DFUs were retrieved.The most published countries,institutions,journals,and authors in this field were China,Shanghai Jiao Tong University of China,Wound Repair and Regeneration,and Aristidis Veves.Through the analysis of keyword co-occurrence networks,historical direct citation networks,thematic maps,and trend topics maps,we synthesized the prevailing research hotspots and emerging trends in this field.CONCLUSION Our bibliometric analysis provides a comprehensive overview of macrophage-related DFUs research and insights into promising upcoming research.
基金Supported by The National Natural Science Foundation of China,No.81172301Changsha Municipal Science and Technology Project,No.K1106036-31
文摘AIM: To explore the mechanism of abnormal Connexin (Cx) 32 and Cx43 expression in the gastric mucosa after Helicobacter pylori (H. pylori) infection.
基金the Natural Science Foundation of Guangdong Province, No. 7301061
文摘BACKGROUND: Traumatic approaches, such as sacrifice and perfusion sampling, have been used to evaluate efficiency of stem cell transplantation. However, these methods are not applicable to human studies. Cell tracing, in combination with non-invasive imaging technology, can be utilized to trace cell survival following transplantation to evaluate the efficacy of cell transplantation therapy. OBJECTIVE: To explore feasibility of magnetic resonance imaging (MRI) to observe in vivo repair of injured sciatic nerves following feridex and polylysine (FE-PLL) complex-labeled bone marrow stromal cell (BMSC) transplantation. DESIGN, TIME AND SE'I-rlNG: A randomized, controlled, animal experiment was performed at the Laboratory of the Department of Neurosurgery, Zhujiang Hospital from March to December 2008. MATERIALS: Feridex was purchased from Advanced Magnetic, USA, and polylysine was purchased from Sigma, USA. METHODS: BMSCs were harvested from adult rabbit femurs and were cultured in vitro with neural stem cell culture medium, leukemia inhibitory factor, and basic fibroblast growth factor. Bone marrow stromal cell-derived neural stem cells (BMSC-D-NSCs) were obtained and labeled with FE-PLL complex. The right sciatic nerve (0.8 mm) was excised from healthy, New Zealand rabbits, aged 1.5 months, and the epineuria of distal stumps underwent turnover and were anastomosed at the proximal ends. FE-PLL labeled BMSC-D-NSC suspension or culture medium was transplanted into the epineunal lumen using a microsyringe. The left sciatic nerve was left intact and sewed as the normal control. MAIN OUTCOME MEASURES: Cellular morphology, proliferation, and differentiation, as well as expression of nestin and neuron-specific enolase (NSE), of BMSCs-D-NSCs were observed. Efficacy of FE-PLL labeling and effects on cells were measured. In addition, neural regeneration at 2, 8, and 16 weeks following transplantation was observed by MRI. Histopathology and mean number of regenerated nerve fibers in the proximodistal-injured sciatic nerve were evaluated by hematoxylin and eosin and Bielschowsky staining. RESULTS: Results demonstrated that BMSCs expanded, proliferated, and differentiated into neural-like cells with slim, long processes. The cells expressed nestin and NSE, as detected by immunocytochemistry. BMSC-D-NSCs were effectively labeled by FE-PLL, with a labeling efficiency of 98%. In addition, cell viability was not influenced by the FE-PLL complex. MRI results revealed low signals in the FE-labeled BMSC-D-NSC-implanted region of the sciatic nerve. A low-signal region was observed at 2 weeks, which was widely spread at 8-16 weeks after cell transplantation. The regenerated nerve fibers were orderly arranged in the cell transplantation group and exhibited no significant differences compared with the normal control side (P 〉 0.05). CONCLUSION: BMSCs were successfully cultured in vitro, and the cells proliferated and trans-differentiated into neuronal-like cells, which expressed nestin and NSE. The FE-PLL complex effectively labeled rabbit BMSC-D-NSCs in vitro and did not affect peripheral neural regeneration following cell transplantation. Results demonstrated that MRI could be used to track FE-labeled BMSC-D-NSCs transplanted in the sciatic nerve.
基金supported by the Program of the National Natural Science Foundation of China(Nos.22238002 and 22208047)China Postdoctoral Science Foundation(No.2022M720639)+2 种基金Dalian High-level Talents Innovation Support Project(No.2019RD06)the Liaoning Revitalization Talent Program(No.1801006)Research and Innovation Team Project of Dalian University of Technology(No.DUT2022TB10).
文摘Shape memory photonic crystals(SMPCs)are smart composite materials with changeable structural color integrated by shape memory polymer and photonic crystals.SMPC can produce one or more temporary shapes through nanoscale deformation,memorizing current states.SMPC can be recovered to their original shapes or some intermediate states under external stimuli,accompanied by the variation of structural color.As porous carriers with built-in sensing properties,SMPCs promoted the interdisciplinary development of nanophotonic technology in materials science,environmental engineering,biomedicine,chemical engineering,and mechanics.Herein,the recent progress on multifunctional SMPCs and practical applications,including traditional and cold programmable SMPCs,is summarized and discussed.The primary concern is shape programming at the nanoscale that has demonstrated numerous attractive functions,including smart sensing,ink-free printing,solvent detection,reprogrammable gradient wetting,and controllable bubble transportation,under variations of the surface nanostructure.It aims to figure out the nanoscale shape memory effects on structural color conversion and additional performance,inspiring the fabrication of the next generation of SMPCs.Finally,perspectives on future research directions and applications are also presented.It is believed that multifunctional SMPCs are powerful nanophotonic tools for the interdisciplinary development of numerous disciplines in the future.
基金funded by Medical Science and Technology Projects,China(JK2023GK002,JK2023GK003,and JK2023GK004).
文摘Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV). Predicting the incidence of this disease in advance is crucial for policymakers to develop prevention and control strategies. In this study, we utilized historical incidence data of SFTS (2013–2020) in Shandong Province, China to establish three univariate prediction models based on two time-series forecasting algorithms Autoregressive Integrated Moving Average (ARIMA) and Prophet, as well as a special type of recurrent neural network Long Short-Term Memory (LSTM) algorithm. We then evaluated and compared the performance of these models. All three models demonstrated good predictive capabilities for SFTS cases, with the predicted results closely aligning with the actual cases. Among the models, the LSTM model exhibited the best fitting and prediction performance. It achieved the lowest values for mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). The number of SFTS cases in the subsequent 5 years in this area were also generated using this model. The LSTM model, being simple and practical, provides valuable information and data for assessing the potential risk of SFTS in advance. This information is crucial for the development of early warning systems and the formulation of effective prevention and control measures for SFTS.
基金supported in part by the Shenzhen Collaborative Innovation Special Plan International Cooperation Research Project(No.GJHZ20220913144400001)the General Research Project of Shenzhen Science and Technology Plan(No.JCYJ20220818100000001).
文摘In order to better realize the energy recovery and storage of hybrid EVs(HEVs),a switched reluctance starter/generator(SRS/G)with both starting and power generation functions is investigated in this paper.First,the iron loss of SRS/G is mainly studied to reduce the motor loss and improve the power generation efficiency.Then,the energy storage of hybrid EVs can be effectively improved.Secondly,a magnetic flux density(MFD)waveforms solution method is proposed to solve the difficulty in calculating the iron loss of the SRS/G.Compared with the commonly used finite element method,the proposed solution method has the advantages of simple,fast and small computational amount.Meanwhile,considering the different operating conditions of SRS/G,the iron loss models for both the time-domain and frequency-domain are established.In addition,the calculation formula of the variable coefficient Bertotti three-term loss separation is improved.As the hysteresis loss coefficient,the Steinmetz coefficient and the stray loss coefficient are respectively fitted by the Fourier fitting method.This method is also applied to solve the iron loss of SRS/G.Finally,through an experimental verification,it is indicated that the development of proposed method has high accuracy.
基金Supported by Medical Science and Technology Projects(JK2023002)National Natural Science Foundation of China(82273691)Open Research Fund Program of the State Key Laboratory of Pathogen and Biosecurity(No.SKLPBS2137).
文摘Introduction:Severe fever with thrombocytopenia syndrome(SFTS)is an emerging infectious disease caused by the SFTS virus,which has a high mortality rate.Predicting the number of SFTS cases is essential for early outbreak warning and can offer valuable insights for establishing prevention and control measures.Methods:In this study,data on monthly SFTS cases in Hubei Province,China,from 2013 to 2020 were collected.Various time series models based on seasonal auto-regressive integrated moving average(SARIMA),Prophet,eXtreme Gradient Boosting(XGBoost),and long short-term memory(LSTM)were developed using these historical data to predict SFTS cases.The established models were evaluated and compared using mean absolute error(MAE)and root mean squared error(RMSE).Results:Four models were developed and performed well in predicting the trend of SFTS cases.The XGBoost model outperformed the others,yielding the closest fit to the actual case numbers and exhibiting the smallest MAE(2.54)and RMSE(2.89)in capturing the seasonal trend and predicting the monthly number of SFTS cases in Hubei Province.Conclusion:The developed XGBoost model represents a promising and valuable tool for SFTS prediction and early warning in Hubei Province,China.
基金supported by the Program of the National Natural Science Foundation of China(22238002 and 22208047)China Postdoctoral Science Foundation(2022M720639)+2 种基金Dalian High-level Talents Innovation Support Project(2019RD06)the Liaoning Revitalization Talent Program(1801006)Research and Innovation Team Project of Dalian University of Technology(DUT2022TB10).
文摘Low-swelling polymers(LSPs)generally refer to materials with a low solvent absorption ratio or volume expansion rate at swelling equilibrium.LSPs with exceptional responsiveness could be upgraded to smart sensors with structural color self-reporting by bridging photonic crystals(PCs).Based on the regulation of swelling to effective refractive index,lattice spacing,the order-disorder arrangement of nanostructures,and incident/detection angle,the structural color feedback of smart photonic crystal sensors(SPCSs)can quantitatively and visually reveal the stimulus,which greatly promotes the interdisciplinary development of nanophotonic technology in the fields of chemical engineering,materials science,engineering mechanics,biomedicine,environmental engineering,etc.Herein,to clarify the role of the photonic structures and polymer molecules in highperformance SPCSs,LSP-based SPCSs are summarized and discussed,including general swelling mechanisms,color change strategies,structural design,and typical functional applications.It aims to figure out the combination rule between PC structures and LSPs,optimize the design of PC structures,and expound the corresponding structural color sensing mechanisms,inspiring the fabrication of next-generation SPCSs.Finally,perspectives on future structural design and sensing applications are also presented.It is believed that SPCSs are multifunctional nanophotonic tools for the interdisciplinary development of numerous engineering fields in the future.
基金supported by the National Key Research and Development Project(grant no.2019YFD0901905).
文摘Chronic diabetic wound healing remains a formidable challenge due to susceptibility to bacterial infection,excessive oxidative stress,and poor angiogenesis.To address these issues,a sodium alginate(SA)based photothermal hydrogel dressing with multifunction was fabricated to facilitate wound treatment.Ceria nanoparticles(CeO_(2)NPs)was synthesized,and their antibacterial performance by near-infrared light triggered photothermal effects was first studied and verified in this work.In addition,to release CeO_(2)NPs to achieve antioxidation and pro-vascularization,thermosensitive gelatin(Gel)was utilized to embed the nanoparticles in advance and then composited in SA hydrogel networks.SA network was finally strengthened by acid soaking to form partially crystalline regions to act as natural crosslinkers.Results showed that the Gel/SA/CeO_(2)hydrogel displayed temperature-responsive release of CeO_(2)NPs,significant antibacterial and antioxidative activity,as well as the ability to remove without injury and promote infected diabetic wound healing with low cytotoxicity,according to antibacterial investigations,cell studies,and in vivo animal studies.This research offers not only a successful method for quickening the healing of diabetic wounds but also a fresh approach to the general use of CeO_(2)NPs.