Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and frag...Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments.展开更多
This paper examines the effect of the microstructure and electrical conductivity(EC)on the swelling ratio and pressure in red-bed mudstone sampled from arid areas in the Xining region in the northeastern Tibetan Plate...This paper examines the effect of the microstructure and electrical conductivity(EC)on the swelling ratio and pressure in red-bed mudstone sampled from arid areas in the Xining region in the northeastern Tibetan Plateau.A series of laboratory tests,including swelling experiments,X-ray diffraction(XRD),and scanning electron microscope(SEM),was carried out for mechanical and microstructural analysis.The coupled influence of the EC and microstructural parameters on the expansion ratio and pressure was investigated,and the weight coefficients were discussed by the entropy weight method.The results revealed an increasing exponential trend in EC,and the maximum swelling speed occurred at an EC of approximately 10 μS/cm.In addition,a method for predicting the expansion potential is proposed based on the microstructure,and its reliability is verified by comparing with swelling experimental results.In addition,according to the image analysis results,the ranges of the change in the clay minerals content(CMC),the fractal dimension(FD),the average diameter(AD)of pores,and the plane porosity(PP)are 23.75%-53%,1.08-1.17,7.53-22.45 mm,and 0.62%-1.25%,respectively.Moreover,mudstone swelling is negatively correlated with the plane porosity,fractal dimension and average diameter and is linearly correlated with the clay mineral content.Furthermore,the weight values prove that the microstructural characteristics,including FD,AD,and PP,are the main factors influencing the expansion properties of red-bed mudstones in the Xining region.Based on the combination of macro and micro-analyses,a quantitative analysis of the swelling process of mudstones can provide a better reference for understanding the mechanism of expansion behavior.展开更多
The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,a...The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,and high-cycle fatigue properties,were studied.The results showed that the LSP induced residual compressive stresses on the surface and near surface of the material.The maximum surface residual compressive stress was−661 MPa,and the compressive-stress-affected depth was greater than 1000μm.The roughness and Vickers micro-hardness increased with the number of shocks,and the maximum hardness-affected depth was about 700μm after three LSP treatments.LSP enhanced the fraction of low-angle grain boundaries,changed the grain preferred orientations,and notably increased the pole density ofαphase on the near surface from 2.41 to 3.46.The surface hardness values of the LSP samples increased with the increase of the number of shocks due to work hardening,while the LSP had a limited effect on the tensile properties.The high-cycle fatigue life of the LSP-treated sample was significantly enhanced by more than 20%compared with that of the untreated sample,which was caused by the suppression of the initiation and propagation of fatigue cracks.展开更多
This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information avail...This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.展开更多
Objective:To study the relationship of renin-angiotensin-aldosterone system (RAAS) activity with systemic inflammatory response and target organ function in patients with severe acute pancreatitis.Methods: The patient...Objective:To study the relationship of renin-angiotensin-aldosterone system (RAAS) activity with systemic inflammatory response and target organ function in patients with severe acute pancreatitis.Methods: The patients with acute pancreatitis admitted in Zigong Third People's Hospital between June 2014 and December 2016 were selected and divided into MAP group and SAP group, and the healthy volunteers who received physical examination during the same period and were with matched general data were selected as control group. Serum was collected to determine the levels of RAAS molecules, inflammation molecules as well as liver and intestinal mucosal barrier injury molecules.Results: Serum PRA, AngII, ALD, TNF-α, sTREM-1, PCT, CRP, LPS, DAO and HBD2 contents of SAP group and MAP group were significantly higher than those of control group;serum PRA, AngII, ALD, TNF-α, sTREM-1, PCT, CRP, LPS, DAO and HBD2 contents of SAP group were significantly higher than those of MAP group;serum PRA, AngII and ALD contents of SAP group were positively correlated with TNF-α, sTREM-1, PCT, CRP, LPS, DAO and HBD2 contents.Conclusion:The activation of RAAS system in patients with severe acute pancreatitis is closely related to the amplification of systemic inflammatory response and the damage of target organs.展开更多
The widespread use of computed tomography(CT)in clinical practice has made the public focus on the cumulative radiation dose delivered to patients.Low-dose CT(LDCT)reduces the X-ray radiation dose,yet compromises qual...The widespread use of computed tomography(CT)in clinical practice has made the public focus on the cumulative radiation dose delivered to patients.Low-dose CT(LDCT)reduces the X-ray radiation dose,yet compromises quality and decreases diagnostic performance.Researchers have made great efforts to develop various algorithms for LDCT and introduced deep-learning techniques,which have achieved impressive results.However,most of these methods are directly performed on reconstructed LDCT images,in which some subtle structures and details are readily lost during the reconstruction procedure,and convolutional neural network(CNN)-based methods for raw LDCT projection data are rarely reported.To address this problem,we adopted an attention residual dense CNN,referred to as AttRDN,for LDCT sinogram denoising.First,it was aided by the attention mechanism,in which the advantages of both feature fusion and global residual learning were used to extract noise from the contaminated LDCT sinograms.Then,the denoised sinogram was restored by subtracting the noise obtained from the input noisy sinogram.Finally,the CT image was reconstructed using filtered back-projection.The experimental results qualitatively and quantitatively demonstrate that the proposed AttRDN can achieve a better performance than state-of-the-art methods.Importantly,it can prevent the loss of detailed information and has the potential for clinical application.展开更多
This paper addresses the problem of robust adaptive control for robotic systems with model uncertainty and input time-varying delay. The Hamiltonian method is applied to develop the stabilization results of the roboti...This paper addresses the problem of robust adaptive control for robotic systems with model uncertainty and input time-varying delay. The Hamiltonian method is applied to develop the stabilization results of the robotic systems. Firstly, with the idea of shaping potential energy and the pre-feedback skill, the n degree-of-freedom(DOF) uncertain robotic systems are realized as an augmented dissipative Hamiltonian formulation with delay.Secondly, based on the obtained Hamiltonian system formulation and by using of the Lyapunov-Krasovskii(L-K) functional method, an adaptive controller is designed to show that the robotic systems can be asymptotically stabilized depending on the input delay. Meanwhile, some sufficient conditions are spelt out to guarantee the rationality and validity of the proposed control law. Finally, study of an illustrative example with simulations shows that the controller obtained in this paper works very well in handling uncertainties and input delay in the robotic systems.展开更多
A semisolid slurry of AZ31 magnesium alloy was prepared by vibrating wavelike sloping plate process,and the semisolid die forging process,microstructures,and properties of the magnesium alloy mobile telephone shell we...A semisolid slurry of AZ31 magnesium alloy was prepared by vibrating wavelike sloping plate process,and the semisolid die forging process,microstructures,and properties of the magnesium alloy mobile telephone shell were investigated.The semisolid forging process was performed on a YA32-315 four-column universal hydraulic press.The microstructures were observed by optical microscopy,the hardness was analyzed with a model 450SVD Vickers hardometer,the mechanical properties was measured with a CMT5105 tensile test machine,and the fractograph of elongated specimens was observed by scanning electron microscopy (SEM).The results reveal that with the increase of die forging force,the microstructures of the product become fine and dense.A lower preheating temperature and a longer dwell time are favorable to the formation of fine and dense microstructures.The optimum process conditions of preparing mobile telephone shells with excellent surface quality and microstructures are a die forging force of 2000 kN,a die preheating temperature of 250℃,and a dwell time of 240 s.After solution treatment at 430℃ and aging at 220℃ for 8 h,the Vickers hardness is 61.7 and the ultimate tensile strength of the product is 193MPa.Tensile fractographs show the mixing mechanisms of quasi-cleavage fracture and ductile fracture.展开更多
In this paper, we investigate the selection rule for desalinating seawater using functionalized graphene sheet as a semi-permissible membrane. Both the applied mathematical modeling and MD simulations will be used to ...In this paper, we investigate the selection rule for desalinating seawater using functionalized graphene sheet as a semi-permissible membrane. Both the applied mathematical modeling and MD simulations will be used to determine the acceptance conditions for water molecule or sodium ion permeating into the functionalized graphene. Both the Lennard-Jones potential and Coulomb forces are considered by taking into accounts the major molecular and ionic interactions between molecules, ions and functionalized graphene sheet. The continuous approximation will then be used to coarse grain most significant molecular and ionic interactions so that the multi-body problems could be simplified into several two-body problems and the 3D motions are reduced into degenerated 1D motion. Our mathematical model and simulations show that the negatively charged graphene always accepts sodium ions and water;however the permeability of water molecules and sodium ions becomes very sensitive to the presence of positive charges on the graphene.展开更多
Compliance motion and footstep adjustment are active balance control strategies from learning human subconscious behaviors.The force estimation without direct end-actuator force measurement and the optimal footsteps b...Compliance motion and footstep adjustment are active balance control strategies from learning human subconscious behaviors.The force estimation without direct end-actuator force measurement and the optimal footsteps based on complex analytical calculation are still challenging tasks for elementary and kid-size position-controlled robots.In this paper,an online compliant controller with Gravity Projection Observer(GPO),which can express the external force condition of perturbations by the estimated Projection of Gravity(PoG)with estimation covariance,is proposed for the realization of disturbance absorption,with which the robustness of the humanoid contact with environments can be maintained.The fuzzy footstep planner based on capturability analysis is proposed,and the Model Predictive Control(MPC)is applied to generate the desired steps.The fuzzification rules are well-designed and give the corresponding control output responding to complex and changeable external disturbances.To validate the presented methods,a series of experiments on a real humanoid robot are conducted.The results verify the effectiveness of the proposed balance control framework.展开更多
Gastric cancer(GC)is the third most common cause of cancer death globally and a large portion of patients are diagnosed at advanced stages with cancer invasion and metastasis1,2.However,the mechanisms underlying the i...Gastric cancer(GC)is the third most common cause of cancer death globally and a large portion of patients are diagnosed at advanced stages with cancer invasion and metastasis1,2.However,the mechanisms underlying the invasion and metastasis of GC remain to be delineated.ZYX plays critical roles in cell mobility via cytoskeleton regulation in various cell types.3 In this study,we further reported that ZYX promoted migration,invasion,and metastasis of GC cells.Mechanistically,ZYX promoted WNK1 activation and SNAl1 up-regulation,inducing epithelial-mesenchymal transition(EMT)to enhance the mobility of GC cells.Inhibition of WNK1 impaired the mobility of GC cells.Therefore,ZYX/WNK1 could be potential therapeutic targets for GC treatment.展开更多
We study a class of non-densely defined impulsive neutral stochastic functional differential equations driven by an independent cylindrical fractional Brownian motion (fBm) with Hurst parameter H ∈ (1/2, 1) in th...We study a class of non-densely defined impulsive neutral stochastic functional differential equations driven by an independent cylindrical fractional Brownian motion (fBm) with Hurst parameter H ∈ (1/2, 1) in the Hilbert space. We prove the existence and uniqueness of the integral solution for this kind of equations with the coefficients satisfying some non-Lipschitz conditions. The results are obtained by using the method of successive approximation.展开更多
Recently,the fifth-generation(5G)of wireless networks mainly focuses on the terrestrial applications.However,the well-developed emerging technologies in 5G are hardly applied to the maritime communications,resulting f...Recently,the fifth-generation(5G)of wireless networks mainly focuses on the terrestrial applications.However,the well-developed emerging technologies in 5G are hardly applied to the maritime communications,resulting from the lack of communication infrastructure deployed on the vast ocean,as well as different characteristics of wireless propagation environment over the sea and maritime user distribution.To satisfy the expected plethora of broadband communications and multimedia applications on the ocean,a brand-new maritime information network with a comprehensive coverage capacity in terms of all-hour,all-weather,and all-sea-area has been expected as a revolutionary paradigm to extend the terrestrial capacity of enhanced broadband,massive access,ultra-reliable,and low-latency to the vast ocean.Further considering the limited available resource of maritime communication infrastructure,the convergence of broadband and broadcast/multicast can be regarded as a possible yet practical solution for realizing an efficient and flexible resource configuration with high quality of services.Moreover,according to such multi-functionality and all-coverage maritime information network,the monitoring and sensing of vast ocean area relying on massive Ocean of Things and advanced radar techniques can be also supported.Concerning these issues above,this study proposes a Software Defined Networking(SDN)based Maritime Giant Cellular Network(MagicNet)architecture for broadband and multimedia services.Based on this network,the convergence techniques of broadband and broadcast/multicast,and their supporting for maritime monitoring and marine sensing are also introduced and surveyed.展开更多
Little data is available on the evaluation of the occurrence rates of Epstein-Barr virus(EBV) in saliva and relationship with highly active antiretroviral therapy(HAART) use in HIV/AIDS patients in China. We conducted...Little data is available on the evaluation of the occurrence rates of Epstein-Barr virus(EBV) in saliva and relationship with highly active antiretroviral therapy(HAART) use in HIV/AIDS patients in China. We conducted a retrospective cohort study of EBV serological tests for HIV/AIDS patients who were treated in the hospitals for infectious diseases in Wuxi and Shanghai, China from May 2016 to April 2017. The EBV-seropositive samples were identified by ELISA. EBV-specific primers and probes were used for the quantitative detection of viral DNA from saliva via quantitative real-time polymerase chain reaction. CD4 cell counts of the HIV/AIDS patients were detected by a flow cytometry. A total of 372 HIV/AIDS patients were ultimately selected and categorized for this retrospective cohort study. For EBV IgG and IgM, the HIV/AIDS HAART use(H) and non-HAART use(NH) groups had significantly higher seropositive rates than the HIV-negative control group. The HIV/AIDS(NH) group had the highest seropositive rate(IgG, 94.27%; IgM, 68.98%) and the highest incidence of EBV reactivation or infection. For salivary EBV DNA-positive rates and quantities, the HIV/AIDS(H)(73.69%) and the HIV/AIDS(NH)(100%) groups showed significantly higher values than the HIV-negative control group(35.79%,[ twofold). Further, the salivary EBV DNA-negative population had significantly higher CD4 cell counts than the EBV DNA-positive population in the HIV/AIDS(H) group and the HIV/AIDS(NH) groups. Thus, HAART use is beneficial in decreasing the EBV salivary shedding in HIV/AIDS patients and indirectly decreases EBV transmission risk.展开更多
The friction and wear behavior of resin/graphite composite has been investigated using a pin-on-disc configuration under dry sliding condition. The results showed that the resin/graphite composite exhibited much bette...The friction and wear behavior of resin/graphite composite has been investigated using a pin-on-disc configuration under dry sliding condition. The results showed that the resin/graphite composite exhibited much better mechanical and tribological properties compared with the unimpregnated graphite. The friction coefficient was reduced by addition of furan resin, which could also prevent the'dusting' wear at loads more than 15 MPa. The steady and lubricated transfer film was easily formed on the counterpart surface due to the interaction of furan resin and wear debris of graphite, which was useful to reduce the wear rate of the resin/graphite composite. The composite is highly promising for mechanical sealing application and can be used at high load for long time sliding.展开更多
A fault-tolerant 1-spanner is used to preserve all the minimum energy paths after node failures to cope with fault-tolerant topology control problems in wireless ad hoc networks. A fault-tolerant 1-spanner is a graph ...A fault-tolerant 1-spanner is used to preserve all the minimum energy paths after node failures to cope with fault-tolerant topology control problems in wireless ad hoc networks. A fault-tolerant 1-spanner is a graph such that the remaining graph after node failures will not only remain connected, but also have a stretch factor of one. The fault-tolerant 1-spanner is used in a localized and distributed topology control algorithm, named the k-Fault-Tolerant 1-Spanner (k-FT1S), where each node constructs a minimum energy path tree for every local failed node set. This paper proves that the topology constructed by k-FT1S is a k-fault-tolerant 1-spanner that can tolerate up to k node failures, such that the remaining network after node failures preserves all the minimum energy paths of the remaining network gained from the initial network by removing the same failed nodes. Simulations show that the remaining network after removal of any k nodes still has the optimal energy efficiency and is competitive in terms of average logical degree, average physical degree, and average transmission radius.展开更多
Coronavirus disease 2019(COVID-19)is an unprecedented pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).As of 22 February 2021,the worldwide pandemic has resulted in more than 110 million ...Coronavirus disease 2019(COVID-19)is an unprecedented pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).As of 22 February 2021,the worldwide pandemic has resulted in more than 110 million cases and 2.4 million deaths.1 Clinical investigation of COVID-19 patients has shown that a systemic cytokine storm can occur,especially in severe cases.2 Treatment of the SARS-CoV-2-associated cytokine storm with tocilizumab3 or anakinra4 has been shown to immediately improve the clinical outcome in most severe and critical COVID-19 patients.These data highlight the systemic cytokine storm as an important exacerbating event in severe COVID-19;however,our understanding of the molecular mechanisms involved in the initiation of the SARS-CoV-2-associated cytokine storm is limited.In the present study,we uncovered a reasonable explanation for cytokine storm initiation through the analysis of 13 autopsy samples from severe COVID-19 patients.展开更多
Article 5 of the Stockholm Convention requires that each Party shall take measures to reduce the releases from anthropogenic sources of unintentional persistent organic pollutants(UPOPs),with the goal of their continu...Article 5 of the Stockholm Convention requires that each Party shall take measures to reduce the releases from anthropogenic sources of unintentional persistent organic pollutants(UPOPs),with the goal of their continuing minimization and,where feasible,their ultimate elimination.A major source of polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs)and other unintentional POPs releases,both in China and worldwide,is the metal industry in particular secondary metal industries such as copper smelting.More than 50%of the global secondary copper production is now in China and high levels of PCDD/Fs are released from these operations with the national inventory of China reporting a total of 1133.8 g toxic equivalents(TEQ)yr1.Consequently the Global Environment Facility(GEF)is supporting the project‘UPOPs Reduction through best available techniques and best environmental practices(BAT/BEP)in the secondary copper production sector’in China compromising>50%of the global secondary copper production.As part of this project,information on relevant UPOPs from the metal industry have been reviewed and is presented here.This information should also be useful for other(developing)countries for controlling UPOPs releases from metal industries.This review and the information it contains provides a robust resource for policy makers,the industry and researchers to improve secondary copper production to BAT/BEP standards in relation to the reduction of PCDD/Fs and other UPOPs release.The contents include the details required to assist the understanding of the formation of chlorinated UPOPs along with their brominated and brominated-chlorinated analogues.It reviews the international sources of information on BAT/BEP,including the integrated approach considered in the European BAT Reference document,and shows how this can be used to achieve an overall reduction of pollutant releases from the industry.The current national standards of PCDD/F limits to air,water and solid residues have been compiled and are also included.Challenges which need to be addressed,such as the current international lack to consider brominated and mixed bromo-chloro PXDD/Fs which might be more environmentally significant than PCDD/Fs in some facilities e are also discussed.The study includes a brief description of the steps China has taken to change the national regulatory framework and to improve the sustainability of its secondary metal industry.The Stockholm Convention BAT/BEP guidelines recommend consideration of integrated pollution prevention and control and sustainable production as general principles which parties may incorporate when applying the BAT/BEP guidelines and guidance.This holistic approach is considered in the current project and in the improvement of the pilot facilities and will also be considered in the replication of experiences in other facilities.Using this approach ensures the implementation of the Stockholm Convention can contribute to integrated pollution prevention and control,the development of a circular economy and consequently to genuinely sustainable development thus contributing to different sustainable development goals(SDGs).It is hoped this approach will be adopted in other developing and transition economies and thus help to achieve improvements of the secondary metal industry globally.展开更多
基金This project was financially supported by the National Natural Science Foundation of China(31601244 and 31971843)the Guangdong Provincial Key Field Research and Development Plan Project,China(2019B020221003)the Modern Agricultural Industrial Technology System of Guangdong Province,China(2020KJ105).
文摘Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments.
基金the funding support from National Natural Science Foundation of China(Grant No.42077271)Sichuan Science and Technology Program,China(Grant No.2023YFS0364)Chengdu Science and Technology Program(Grant No.2022-YF05-00340-SN).
文摘This paper examines the effect of the microstructure and electrical conductivity(EC)on the swelling ratio and pressure in red-bed mudstone sampled from arid areas in the Xining region in the northeastern Tibetan Plateau.A series of laboratory tests,including swelling experiments,X-ray diffraction(XRD),and scanning electron microscope(SEM),was carried out for mechanical and microstructural analysis.The coupled influence of the EC and microstructural parameters on the expansion ratio and pressure was investigated,and the weight coefficients were discussed by the entropy weight method.The results revealed an increasing exponential trend in EC,and the maximum swelling speed occurred at an EC of approximately 10 μS/cm.In addition,a method for predicting the expansion potential is proposed based on the microstructure,and its reliability is verified by comparing with swelling experimental results.In addition,according to the image analysis results,the ranges of the change in the clay minerals content(CMC),the fractal dimension(FD),the average diameter(AD)of pores,and the plane porosity(PP)are 23.75%-53%,1.08-1.17,7.53-22.45 mm,and 0.62%-1.25%,respectively.Moreover,mudstone swelling is negatively correlated with the plane porosity,fractal dimension and average diameter and is linearly correlated with the clay mineral content.Furthermore,the weight values prove that the microstructural characteristics,including FD,AD,and PP,are the main factors influencing the expansion properties of red-bed mudstones in the Xining region.Based on the combination of macro and micro-analyses,a quantitative analysis of the swelling process of mudstones can provide a better reference for understanding the mechanism of expansion behavior.
基金the National Natural Science Foundation of China(No.52205240).
文摘The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,and high-cycle fatigue properties,were studied.The results showed that the LSP induced residual compressive stresses on the surface and near surface of the material.The maximum surface residual compressive stress was−661 MPa,and the compressive-stress-affected depth was greater than 1000μm.The roughness and Vickers micro-hardness increased with the number of shocks,and the maximum hardness-affected depth was about 700μm after three LSP treatments.LSP enhanced the fraction of low-angle grain boundaries,changed the grain preferred orientations,and notably increased the pole density ofαphase on the near surface from 2.41 to 3.46.The surface hardness values of the LSP samples increased with the increase of the number of shocks due to work hardening,while the LSP had a limited effect on the tensile properties.The high-cycle fatigue life of the LSP-treated sample was significantly enhanced by more than 20%compared with that of the untreated sample,which was caused by the suppression of the initiation and propagation of fatigue cracks.
文摘This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.
文摘Objective:To study the relationship of renin-angiotensin-aldosterone system (RAAS) activity with systemic inflammatory response and target organ function in patients with severe acute pancreatitis.Methods: The patients with acute pancreatitis admitted in Zigong Third People's Hospital between June 2014 and December 2016 were selected and divided into MAP group and SAP group, and the healthy volunteers who received physical examination during the same period and were with matched general data were selected as control group. Serum was collected to determine the levels of RAAS molecules, inflammation molecules as well as liver and intestinal mucosal barrier injury molecules.Results: Serum PRA, AngII, ALD, TNF-α, sTREM-1, PCT, CRP, LPS, DAO and HBD2 contents of SAP group and MAP group were significantly higher than those of control group;serum PRA, AngII, ALD, TNF-α, sTREM-1, PCT, CRP, LPS, DAO and HBD2 contents of SAP group were significantly higher than those of MAP group;serum PRA, AngII and ALD contents of SAP group were positively correlated with TNF-α, sTREM-1, PCT, CRP, LPS, DAO and HBD2 contents.Conclusion:The activation of RAAS system in patients with severe acute pancreatitis is closely related to the amplification of systemic inflammatory response and the damage of target organs.
基金This work was supported in part by the National Key R&D Program of China(Nos.2016YFC0104609 and 2019YFC0605203)The Fundamental Research Funds for the Central Universities(Nos.2019CDYGYB019 and 2020CDJ-LHZZ-075)。
文摘The widespread use of computed tomography(CT)in clinical practice has made the public focus on the cumulative radiation dose delivered to patients.Low-dose CT(LDCT)reduces the X-ray radiation dose,yet compromises quality and decreases diagnostic performance.Researchers have made great efforts to develop various algorithms for LDCT and introduced deep-learning techniques,which have achieved impressive results.However,most of these methods are directly performed on reconstructed LDCT images,in which some subtle structures and details are readily lost during the reconstruction procedure,and convolutional neural network(CNN)-based methods for raw LDCT projection data are rarely reported.To address this problem,we adopted an attention residual dense CNN,referred to as AttRDN,for LDCT sinogram denoising.First,it was aided by the attention mechanism,in which the advantages of both feature fusion and global residual learning were used to extract noise from the contaminated LDCT sinograms.Then,the denoised sinogram was restored by subtracting the noise obtained from the input noisy sinogram.Finally,the CT image was reconstructed using filtered back-projection.The experimental results qualitatively and quantitatively demonstrate that the proposed AttRDN can achieve a better performance than state-of-the-art methods.Importantly,it can prevent the loss of detailed information and has the potential for clinical application.
基金supported by the National Natural Science Foundation of China(61703232)the Natural Science Foundation of Shandong Province(ZR2017MF068,ZR2017QF013)
文摘This paper addresses the problem of robust adaptive control for robotic systems with model uncertainty and input time-varying delay. The Hamiltonian method is applied to develop the stabilization results of the robotic systems. Firstly, with the idea of shaping potential energy and the pre-feedback skill, the n degree-of-freedom(DOF) uncertain robotic systems are realized as an augmented dissipative Hamiltonian formulation with delay.Secondly, based on the obtained Hamiltonian system formulation and by using of the Lyapunov-Krasovskii(L-K) functional method, an adaptive controller is designed to show that the robotic systems can be asymptotically stabilized depending on the input delay. Meanwhile, some sufficient conditions are spelt out to guarantee the rationality and validity of the proposed control law. Finally, study of an illustrative example with simulations shows that the controller obtained in this paper works very well in handling uncertainties and input delay in the robotic systems.
基金supported by the National Natural Science Foundation of China (Nos.51034002 and 50974038)the New Century Talents Support Program Project of the Ministry of Education of China (No.NCET-08-0097)
文摘A semisolid slurry of AZ31 magnesium alloy was prepared by vibrating wavelike sloping plate process,and the semisolid die forging process,microstructures,and properties of the magnesium alloy mobile telephone shell were investigated.The semisolid forging process was performed on a YA32-315 four-column universal hydraulic press.The microstructures were observed by optical microscopy,the hardness was analyzed with a model 450SVD Vickers hardometer,the mechanical properties was measured with a CMT5105 tensile test machine,and the fractograph of elongated specimens was observed by scanning electron microscopy (SEM).The results reveal that with the increase of die forging force,the microstructures of the product become fine and dense.A lower preheating temperature and a longer dwell time are favorable to the formation of fine and dense microstructures.The optimum process conditions of preparing mobile telephone shells with excellent surface quality and microstructures are a die forging force of 2000 kN,a die preheating temperature of 250℃,and a dwell time of 240 s.After solution treatment at 430℃ and aging at 220℃ for 8 h,the Vickers hardness is 61.7 and the ultimate tensile strength of the product is 193MPa.Tensile fractographs show the mixing mechanisms of quasi-cleavage fracture and ductile fracture.
文摘In this paper, we investigate the selection rule for desalinating seawater using functionalized graphene sheet as a semi-permissible membrane. Both the applied mathematical modeling and MD simulations will be used to determine the acceptance conditions for water molecule or sodium ion permeating into the functionalized graphene. Both the Lennard-Jones potential and Coulomb forces are considered by taking into accounts the major molecular and ionic interactions between molecules, ions and functionalized graphene sheet. The continuous approximation will then be used to coarse grain most significant molecular and ionic interactions so that the multi-body problems could be simplified into several two-body problems and the 3D motions are reduced into degenerated 1D motion. Our mathematical model and simulations show that the negatively charged graphene always accepts sodium ions and water;however the permeability of water molecules and sodium ions becomes very sensitive to the presence of positive charges on the graphene.
基金supported by the National Natural Science Foundation of China under Grants 62173248,62073245.
文摘Compliance motion and footstep adjustment are active balance control strategies from learning human subconscious behaviors.The force estimation without direct end-actuator force measurement and the optimal footsteps based on complex analytical calculation are still challenging tasks for elementary and kid-size position-controlled robots.In this paper,an online compliant controller with Gravity Projection Observer(GPO),which can express the external force condition of perturbations by the estimated Projection of Gravity(PoG)with estimation covariance,is proposed for the realization of disturbance absorption,with which the robustness of the humanoid contact with environments can be maintained.The fuzzy footstep planner based on capturability analysis is proposed,and the Model Predictive Control(MPC)is applied to generate the desired steps.The fuzzification rules are well-designed and give the corresponding control output responding to complex and changeable external disturbances.To validate the presented methods,a series of experiments on a real humanoid robot are conducted.The results verify the effectiveness of the proposed balance control framework.
基金supported by the Chongqing Academician Program(No.cstc2019yszx-jcyjx0008 to Y.W.)The Subject of Health Commission of Hubei Province,China(No.WJ2021M222 to X.-M.W.).
文摘Gastric cancer(GC)is the third most common cause of cancer death globally and a large portion of patients are diagnosed at advanced stages with cancer invasion and metastasis1,2.However,the mechanisms underlying the invasion and metastasis of GC remain to be delineated.ZYX plays critical roles in cell mobility via cytoskeleton regulation in various cell types.3 In this study,we further reported that ZYX promoted migration,invasion,and metastasis of GC cells.Mechanistically,ZYX promoted WNK1 activation and SNAl1 up-regulation,inducing epithelial-mesenchymal transition(EMT)to enhance the mobility of GC cells.Inhibition of WNK1 impaired the mobility of GC cells.Therefore,ZYX/WNK1 could be potential therapeutic targets for GC treatment.
基金Acknowledgements The authors were deeply grateful to the anonymous referees for the careful reading, valuable comments, and correcting some errors, which have greatly improved the quality of the paper. This work was supported by the National Natural Science Foundation of China (Grant No. 11371029).
文摘We study a class of non-densely defined impulsive neutral stochastic functional differential equations driven by an independent cylindrical fractional Brownian motion (fBm) with Hurst parameter H ∈ (1/2, 1) in the Hilbert space. We prove the existence and uniqueness of the integral solution for this kind of equations with the coefficients satisfying some non-Lipschitz conditions. The results are obtained by using the method of successive approximation.
基金supported by the National Natural Science Foundation China(Nos.61931015 and 61971257)the National Key R&D Program of China(Nos.2020YFD0901000 and 2017YFE0112300)+2 种基金Beijing National Research Center for Information Science and Technology(Nos.BNR2019RC01014 and BNR2019TD01001)the project of Peng Cheng Laboratory(No.LZC0020)the China Postdoctoral Science Foundation(Nos.2019T120091 and 2018M640130)。
文摘Recently,the fifth-generation(5G)of wireless networks mainly focuses on the terrestrial applications.However,the well-developed emerging technologies in 5G are hardly applied to the maritime communications,resulting from the lack of communication infrastructure deployed on the vast ocean,as well as different characteristics of wireless propagation environment over the sea and maritime user distribution.To satisfy the expected plethora of broadband communications and multimedia applications on the ocean,a brand-new maritime information network with a comprehensive coverage capacity in terms of all-hour,all-weather,and all-sea-area has been expected as a revolutionary paradigm to extend the terrestrial capacity of enhanced broadband,massive access,ultra-reliable,and low-latency to the vast ocean.Further considering the limited available resource of maritime communication infrastructure,the convergence of broadband and broadcast/multicast can be regarded as a possible yet practical solution for realizing an efficient and flexible resource configuration with high quality of services.Moreover,according to such multi-functionality and all-coverage maritime information network,the monitoring and sensing of vast ocean area relying on massive Ocean of Things and advanced radar techniques can be also supported.Concerning these issues above,this study proposes a Software Defined Networking(SDN)based Maritime Giant Cellular Network(MagicNet)architecture for broadband and multimedia services.Based on this network,the convergence techniques of broadband and broadcast/multicast,and their supporting for maritime monitoring and marine sensing are also introduced and surveyed.
基金supported by the Grant of Wuxi Technology Bureau Scientific and Technology Project (CSE31N1607)the Wuxi Key Medical Talents Program (ZDRC024)+5 种基金Shanghai Pujiang Program (15PJ1407300)the Wuxi Medical Development Discipline Program (FZXK006, MS201702)the Significant Program from Wuxi Health and Family Planning Commission (z201603)the National High Technology Research and Development Program of China (2014AA021403)the National Natural Science Foundation of China (81571977, 81701550)the Project from Shanghai Municipal Commission of Health and Family Planning (15GWZK0103)
文摘Little data is available on the evaluation of the occurrence rates of Epstein-Barr virus(EBV) in saliva and relationship with highly active antiretroviral therapy(HAART) use in HIV/AIDS patients in China. We conducted a retrospective cohort study of EBV serological tests for HIV/AIDS patients who were treated in the hospitals for infectious diseases in Wuxi and Shanghai, China from May 2016 to April 2017. The EBV-seropositive samples were identified by ELISA. EBV-specific primers and probes were used for the quantitative detection of viral DNA from saliva via quantitative real-time polymerase chain reaction. CD4 cell counts of the HIV/AIDS patients were detected by a flow cytometry. A total of 372 HIV/AIDS patients were ultimately selected and categorized for this retrospective cohort study. For EBV IgG and IgM, the HIV/AIDS HAART use(H) and non-HAART use(NH) groups had significantly higher seropositive rates than the HIV-negative control group. The HIV/AIDS(NH) group had the highest seropositive rate(IgG, 94.27%; IgM, 68.98%) and the highest incidence of EBV reactivation or infection. For salivary EBV DNA-positive rates and quantities, the HIV/AIDS(H)(73.69%) and the HIV/AIDS(NH)(100%) groups showed significantly higher values than the HIV-negative control group(35.79%,[ twofold). Further, the salivary EBV DNA-negative population had significantly higher CD4 cell counts than the EBV DNA-positive population in the HIV/AIDS(H) group and the HIV/AIDS(NH) groups. Thus, HAART use is beneficial in decreasing the EBV salivary shedding in HIV/AIDS patients and indirectly decreases EBV transmission risk.
文摘The friction and wear behavior of resin/graphite composite has been investigated using a pin-on-disc configuration under dry sliding condition. The results showed that the resin/graphite composite exhibited much better mechanical and tribological properties compared with the unimpregnated graphite. The friction coefficient was reduced by addition of furan resin, which could also prevent the'dusting' wear at loads more than 15 MPa. The steady and lubricated transfer film was easily formed on the counterpart surface due to the interaction of furan resin and wear debris of graphite, which was useful to reduce the wear rate of the resin/graphite composite. The composite is highly promising for mechanical sealing application and can be used at high load for long time sliding.
基金Supported by the National Natural Science Foundation of China (No.60932005)
文摘A fault-tolerant 1-spanner is used to preserve all the minimum energy paths after node failures to cope with fault-tolerant topology control problems in wireless ad hoc networks. A fault-tolerant 1-spanner is a graph such that the remaining graph after node failures will not only remain connected, but also have a stretch factor of one. The fault-tolerant 1-spanner is used in a localized and distributed topology control algorithm, named the k-Fault-Tolerant 1-Spanner (k-FT1S), where each node constructs a minimum energy path tree for every local failed node set. This paper proves that the topology constructed by k-FT1S is a k-fault-tolerant 1-spanner that can tolerate up to k node failures, such that the remaining network after node failures preserves all the minimum energy paths of the remaining network gained from the initial network by removing the same failed nodes. Simulations show that the remaining network after removal of any k nodes still has the optimal energy efficiency and is competitive in terms of average logical degree, average physical degree, and average transmission radius.
基金supported by the China National Center for Biotechnology Development(2020YFC0843800 and 2020YFC0846800)the Natural Science Foundation of China(81922028)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2019442).
文摘Coronavirus disease 2019(COVID-19)is an unprecedented pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).As of 22 February 2021,the worldwide pandemic has resulted in more than 110 million cases and 2.4 million deaths.1 Clinical investigation of COVID-19 patients has shown that a systemic cytokine storm can occur,especially in severe cases.2 Treatment of the SARS-CoV-2-associated cytokine storm with tocilizumab3 or anakinra4 has been shown to immediately improve the clinical outcome in most severe and critical COVID-19 patients.These data highlight the systemic cytokine storm as an important exacerbating event in severe COVID-19;however,our understanding of the molecular mechanisms involved in the initiation of the SARS-CoV-2-associated cytokine storm is limited.In the present study,we uncovered a reasonable explanation for cytokine storm initiation through the analysis of 13 autopsy samples from severe COVID-19 patients.
基金Project supported by the National Basic Research Program(973)of China(No.2011CB201500)the Public Welfare Projects for Environmental Protection(No.201209022),China
基金the National Key Research and Development Project of China(2019YFC1805600)the Global Environment Facility(Project 5383)the contributions are highly appreciated.
文摘Article 5 of the Stockholm Convention requires that each Party shall take measures to reduce the releases from anthropogenic sources of unintentional persistent organic pollutants(UPOPs),with the goal of their continuing minimization and,where feasible,their ultimate elimination.A major source of polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs)and other unintentional POPs releases,both in China and worldwide,is the metal industry in particular secondary metal industries such as copper smelting.More than 50%of the global secondary copper production is now in China and high levels of PCDD/Fs are released from these operations with the national inventory of China reporting a total of 1133.8 g toxic equivalents(TEQ)yr1.Consequently the Global Environment Facility(GEF)is supporting the project‘UPOPs Reduction through best available techniques and best environmental practices(BAT/BEP)in the secondary copper production sector’in China compromising>50%of the global secondary copper production.As part of this project,information on relevant UPOPs from the metal industry have been reviewed and is presented here.This information should also be useful for other(developing)countries for controlling UPOPs releases from metal industries.This review and the information it contains provides a robust resource for policy makers,the industry and researchers to improve secondary copper production to BAT/BEP standards in relation to the reduction of PCDD/Fs and other UPOPs release.The contents include the details required to assist the understanding of the formation of chlorinated UPOPs along with their brominated and brominated-chlorinated analogues.It reviews the international sources of information on BAT/BEP,including the integrated approach considered in the European BAT Reference document,and shows how this can be used to achieve an overall reduction of pollutant releases from the industry.The current national standards of PCDD/F limits to air,water and solid residues have been compiled and are also included.Challenges which need to be addressed,such as the current international lack to consider brominated and mixed bromo-chloro PXDD/Fs which might be more environmentally significant than PCDD/Fs in some facilities e are also discussed.The study includes a brief description of the steps China has taken to change the national regulatory framework and to improve the sustainability of its secondary metal industry.The Stockholm Convention BAT/BEP guidelines recommend consideration of integrated pollution prevention and control and sustainable production as general principles which parties may incorporate when applying the BAT/BEP guidelines and guidance.This holistic approach is considered in the current project and in the improvement of the pilot facilities and will also be considered in the replication of experiences in other facilities.Using this approach ensures the implementation of the Stockholm Convention can contribute to integrated pollution prevention and control,the development of a circular economy and consequently to genuinely sustainable development thus contributing to different sustainable development goals(SDGs).It is hoped this approach will be adopted in other developing and transition economies and thus help to achieve improvements of the secondary metal industry globally.