Image fusion has been developing into an important area of research. In remote sensing, the use of the same image sensor in different working modes, or different image sensors, can provide reinforcing or complementary...Image fusion has been developing into an important area of research. In remote sensing, the use of the same image sensor in different working modes, or different image sensors, can provide reinforcing or complementary information. Therefore, it is highly valuable to fuse outputs from multiple sensors (or the same sensor in different working modes) to improve the overall performance of the remote images, which are very useful for human visual perception and image processing task. Accordingly, in this paper, we first provide a comprehensive survey of the state of the art of multi-sensor image fusion methods in terms of three aspects: pixel-level fusion, feature-level fusion and decision-level fusion. An overview of existing fusion strategies is then introduced, after which the existing fusion quality measures are summarized. Finally, this review analyzes the development trends in fusion algorithms that may attract researchers to further explore the research in this field.展开更多
An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic traje...An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.展开更多
文摘Image fusion has been developing into an important area of research. In remote sensing, the use of the same image sensor in different working modes, or different image sensors, can provide reinforcing or complementary information. Therefore, it is highly valuable to fuse outputs from multiple sensors (or the same sensor in different working modes) to improve the overall performance of the remote images, which are very useful for human visual perception and image processing task. Accordingly, in this paper, we first provide a comprehensive survey of the state of the art of multi-sensor image fusion methods in terms of three aspects: pixel-level fusion, feature-level fusion and decision-level fusion. An overview of existing fusion strategies is then introduced, after which the existing fusion quality measures are summarized. Finally, this review analyzes the development trends in fusion algorithms that may attract researchers to further explore the research in this field.
基金supported by the National Natural Science Foundation of China (Grant No.62103432)supported by Young Talent fund of University Association for Science and Technology in Shaanxi, China(Grant No.20210108)。
文摘An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.