Watermelon is a highly cultivated fruit crop renowned for its quality properties of fruit flesh.Among various quality factors,fruit flesh firmness is a crucial quality parameter influencing the fruit texture,shelf lif...Watermelon is a highly cultivated fruit crop renowned for its quality properties of fruit flesh.Among various quality factors,fruit flesh firmness is a crucial quality parameter influencing the fruit texture,shelf life and its commercial value.The auxin/indole-3-acetic acid(Aux/IAA)plays a significant role in fruit development and ripening of non-climacteric fruits.However,the regulatory mechanism of Aux/IAA in controlling fruit flesh firmness and ripening in watermelon remains unknown.In this study,we employed an integrative approach combining genome-wide association study(GWAS)and bulked segregant RNA-Seq analysis(BSR-Seq)to identify an overlapping candidate region between 12776310 and 12968331 bp on chromosome 6,underlying an auxin-responsive gene(Aux/IAA)associated with flesh firmness in watermelon.Transcriptome analysis,followed by real-time quantitative reverse transcription PCR(qRT-PCR),confirmed that the expression of Aux/IAA was consistently higher in fruits with high flesh firmness.The sequence alignment revealed a single base mutation in the coding region of Aux/IAA.Furthermore,the concomitant Kompetitive/Competitive allele-specific PCR(KASP)genotyping data sets for F2 population and germplasm accessions identified Aux/IAA as a strong candidate gene associated with flesh firmness.Aux/IAA was enriched in the plant hormone signal transduction pathway,involving cell enlargement and leading to low flesh firmness.We determined the higher accumulation of abscisic acid(ABA)in fruits with low flesh firmness than hard flesh.Moreover,overexpression of Aux/IAA induced higher flesh firmness with an increased number of fruit flesh cells while reducing ABA content and flesh cell sizes.Additionally,the allelic variation in Aux/IAA for soft flesh firmness was found to exist in Citrullus mucosospermus and gradually fixed into Citrullus lanatus during domestication,indicating that soft flesh firmness was a domesticated trait.These findings significantly enhanced our understanding of watermelon fruit flesh firmness and consequently the watermelon fruit quality.展开更多
Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native ...Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents.Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant,Xanthium strumarium,and a common native legume,Glycine max.We measured traits related to root and nodule quantity and activity and mycorrhizal colonization.Compared to the monoculture,fine root quantity(biomass,surface area)and activity(root nitrogen(N)concentration,acid phosphatase activity)of G.max decreased in mixed plantings;nodule quantity(biomass)decreased by 45%,while nodule activity in Nfixing via rhizobium increased by 106%;mycorrhizal colonization was unaffected.Contribution of N fixation to leaf N content in G.max increased in the mixed plantings,and this increase was attributed to a decrease in the rhizosphere soil N of G.max in the mixed plantings.Increased root quantity and activity,along with a higher mycorrhizal association was observed in X.strumarium in the mixed compared to monoculture.Together,the invasive plant did not directly scavenge N from nodule-fixed N,but rather depleted the rhizosphere soil N of the legume,thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source.The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions.展开更多
In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave fie...In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave field and rock breaking effect in terms of shockwave collision, stress change of the blast hole wall in the collision zone, and crack propagation in the collision zone. The produced shockwave on the collision surface has an intensity surpassing the sum of the intensities of the two colliding explosion shock waves. At the collisionlocation, the kinetic energy is transformed into potential energy with a reduction in particle velocity at the wave front and the wavefront pressure increases. The expansion form of the superposed shock wave is dumbbell-shaped, the shock wave velocity in the collisionarea is greater than the radial shock wave velocity, and the average propagation angle of the explosion shock waves is approximately 60°.Accordingly, a fitted relationship between blast hole wall stress and explosion wave propagation angle in the superposition area is plotted.Under the experimental conditions, the superimposed explosion wave stress of the blast hole wall is approximately 1.73 times the singleexplosionwave incident stress. The results of the model test and numerical simulations reveal that large-scale radial fracture cracks weregenerated on the blast hole wall in the superimposed area, and the width of the crack increased. The width of the large-scale radial fracturecracks formed by a strong impact is approximately 5% of the blast hole length. According to the characteristics of blast hole wallcompression, the mean peak pressures of the strongly superimposed area are approximately 1.48 and 1.84 times those of the weakly superimposedand nonsuperimposed areas, respectively.展开更多
The yield of castor is influenced by the type of inflorescence and the proportion of female flowers.However,there are few studies on the genetic mechanism involved in the development and differentiation of castor infl...The yield of castor is influenced by the type of inflorescence and the proportion of female flowers.However,there are few studies on the genetic mechanism involved in the development and differentiation of castor inflorescences.In this study,we performed transcriptomic analyses of three different phenotypes of inflorescences at the five-leaf stage.In comparison to the MI(complete pistil without willow leaves),290 and 89 differentially expressed genes(DEGs)were found in the SFI(complete pistil with willow leaves)and the BI(monoecious inflorescence),respectively.Among the DEGs,104 and 88 were upregulated in the SFI and BI,respectively,compared to the MI.In addition,186 DEGs and 1 DEG were downregulated in the SFI and BI compared to the MI.Moreover,we conducted GO and KEGG enrichment analyses of the DEGs.In comparison to the MI,the SFI and BI exhibited the enrichment of functional branches in DEGs,specifically in pollen wall assembly,pollen development,and cellular component assembly involved in morphogenesis.In our study,RADL5 showed low expression levels between SFI-vs.-MI types.In addition,we found that the expression of NAC in the SFI differed from that in MI and BI,and some genes related to hormonal signaling changed their expression levels during inflorescence differentiation.These results reveal the genetic mechanism of sex genotypes in castor,which will not only guide researchers in the breeding of castor but also provide a reference for genetic research on other flowering plants.展开更多
In order to accurately obtain the dynamic characteristics of the cutting mechanism of the mining longitudinal roadheader,combined with the working principle of the mining longitudinal roadheader,the theoretical analys...In order to accurately obtain the dynamic characteristics of the cutting mechanism of the mining longitudinal roadheader,combined with the working principle of the mining longitudinal roadheader,the theoretical analysis and derivation are carried out in detail.By using ADAMS to simulate,the resistance curve and torque curve of the cutting mechanism in different directions are obtained.The results show that ADAMS can effectively predict the excavation resistance and torque of the cutting mechanism of mining longitudinal roadheader,which has certain reference value for future optimization design.展开更多
The rational synergy of chemical composition and spatial nanostructures of electrode materials play important roles in high-performance energy storage devices.Here,we designed pea-like MoS_(2)@NiS_(1.03)-carbon hollow...The rational synergy of chemical composition and spatial nanostructures of electrode materials play important roles in high-performance energy storage devices.Here,we designed pea-like MoS_(2)@NiS_(1.03)-carbon hollow nanofibers using a simple electrospinning and thermal treatment method.The hierarchical hollow nanofiber is composed of a nitrogen-doped carbon-coated NiS_(1.03) tube wall,in which pea-like uniformly discrete MoS_(2) nanoparticles are enclosed.As a sodium-ion battery electrode material,the MoS_(2)@NiS_(1.03)-carbon hollow nanofibers have abundant diphasic heterointerfaces,a conductive network,and appropriate volume variation-buffering spaces,which can facilitate ion diffusion kinetics,shorten the diffusion path of electrons/ion,and buffer volume expansion during Na^(+)insertion/extraction.It shows outstanding rate capacity and long-cycle performance in a sodium-ion battery.This heterogeneous hollow nanoarchitectures designing enlightens an efficacious strategy to boost the capacity and long-life stability of sodium storage performance of electrode materials.展开更多
The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reve...The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reveal the landslide mechanism,taking the north slope of Fushun West Open-pit Mine as an example,this paper analyzed the failure mechanism of different landslides with monitoring and field surveys,and simulated the evolution of landslides.The study indicated that when the green mudstone(hard rock)of the anti-dip slope contains siltized intercalations(soft rock),the existence of weak layers not only aggravates the toppling deformation of anti-dip layered slope with high dip,but also causes the shear failure of anti-dip layered slope with stable low dip.The shear failure including subsidence induced sliding and wedge failure mainly exists in the unloading zone of the slope.Its failure depth and failure time were far less than that of toppling failure.In terms of the development characteristics of deformation,toppling deformation has the long-term and progressive characteristics,but shear failure deformation has the abrupt and transient characteristics.This study has deepened the understanding of such slope landslide mechanism,and can provide reference for similar engineering.展开更多
Deep learning has been widely used in the field of mammographic image classification owing to its superiority in automatic feature extraction.However,general deep learning models cannot achieve very satisfactory class...Deep learning has been widely used in the field of mammographic image classification owing to its superiority in automatic feature extraction.However,general deep learning models cannot achieve very satisfactory classification results on mammographic images because these models are not specifically designed for mammographic images and do not take the specific traits of these images into account.To exploit the essential discriminant information of mammographic images,we propose a novel classification method based on a convolutional neural network.Specifically,the proposed method designs two branches to extract the discriminative features from mammographic images from the mediolateral oblique and craniocaudal(CC)mammographic views.The features extracted from the two-view mammographic images contain complementary information that enables breast cancer to be more easily distinguished.Moreover,the attention block is introduced to capture the channel-wise information by adjusting the weight of each feature map,which is beneficial to emphasising the important features of mammographic images.Furthermore,we add a penalty term based on the fuzzy cluster algorithm to the cross-entropy function,which improves the generalisation ability of the classification model by maximising the interclass distance and minimising the intraclass distance of the samples.The experimental results on The Digital database for Screening Mammography INbreast and MIAS mammography databases illustrate that the proposed method achieves the best classification performance and is more robust than the compared state-ofthe-art classification methods.展开更多
High-voltage pulse discharge(HVPD)rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters,electrode type,etc.In this work,an HVPD rock fragmentation test platform wa...High-voltage pulse discharge(HVPD)rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters,electrode type,etc.In this work,an HVPD rock fragmentation test platform was built and the test waveforms were measured.Considering the effects of temperature,channel expansion and electromagnetic radiation,the impedance model of the plasma channel in the rock was established.The parameters and initial values of the model were determined by an iterative computational process.The model calculation results can reasonably characterize the development of the plasma channel in the rock and estimate the shock wave characteristics.Based on the plasma channel impedance model,the temporal and spatial distribution characteristics of the radial stress and tangential stress in the rock were calculated,and the rock fragmentation effect of the HVPD was analyzed.展开更多
The cortex(i.e.,absorptive tissue)and stele(transportive vascular tissue)are fundamental to the function of plant roots.Unraveling how these anatomical structures are assembled in absorptive roots is essential for our...The cortex(i.e.,absorptive tissue)and stele(transportive vascular tissue)are fundamental to the function of plant roots.Unraveling how these anatomical structures are assembled in absorptive roots is essential for our understanding of plant ecology,physiology,and plant responses to global environmental changes.In this review,we first compile a large data set on anatomical traits in absorptive roots,including cortex thickness and stele radius,across 698 observations and 512 species.Using this data set,we reveal a common root allometry in absorptive root structures,i.e.,cortex thickness increases much faster than stele radius with increasing root diameter(hereafter,root allometry).Root allometry is further validated within and across plant growth forms(woody,grass,and liana species),mycorrhiza types(arbuscular mycorrhiza,ectomycorrhiza,and orchid mycorrhizas),phylogenetic gradients(from ferns to Orchidaceae),and environmental change scenarios(e.g.,elevation of atmospheric CO_(2)concentration and nitrogen fertilization).These findings indicate that root allometry is common in plants.Importantly,root allometry varies greatly across species.We then summarize recent research on the mechanisms of root allometry and potential issues regarding these mechanisms.We further discuss ecological and evolutionary implications of root allometry.Finally,we propose several important research directions that should be pursued regarding root allometry.展开更多
Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechani...Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process.展开更多
The spacecraequipment layout optimization design(SELOD)problems with complicated performance con-straints and diversity are studied in this paper.The previous literature uses the gradient-based algorithm to obtain op...The spacecraequipment layout optimization design(SELOD)problems with complicated performance con-straints and diversity are studied in this paper.The previous literature uses the gradient-based algorithm to obtain optimized non-overlap layout schemes from randomly initialized cases eectively.However,these local optimal solutions are too dicult to jump out of their current relative geometry relationships,signicantly limiting their further improvement in performance indicators.Therefore,considering the geometric diversity of layout schemes is put forward to alleviate this limitation.First,similarity measures,including modied cosine similarity and gaussian kernel function similarity,are introduced into the layout optimization process.Then the optimization produces a set of feasible layout candidates with the most remarkable dierence in geometric distribution and the most representative schemes are sampled.Finally,these feasible geometric solutions are used as initial solutions to optimize the physical performance indicators of the spacecra,and diversied layout schemes of spacecraequipment are generated for the engineering practice.The validity and eectiveness of the proposed methodology are demonstrated by two SELOD applications.展开更多
The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thr...The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thrusters on spacecraft.For the characteristics of the plume bipolar diffusion due to the annular discharge channel of the Hall thruster,a Gaussian-fitted method for thrust vector deviation angle and beam divergence of Hall thrusters based on dual Faraday probe array planes was proposed in respect of the Hall thruster beam characteristics.The results show that the ratios of the deviation between the maximum and minimum values of the beam divergence angle and the thrust vector eccentricity angle using a Gaussian fit to the optimized Faraday probe dual plane to the mean value are 1.4%and 11.5%,respectively.The optimized thrust vector eccentricity angle obtained has been substantially improved,by approximately 20%.The beam divergence angle calculated using a Gaussian fitting to the optimized Faraday probe dual plane is approximately identical to the non-optimized one.The beam divergence and thrust vector eccentricity angles for different anode mass flow rates were obtained by averaging the beam divergence and thrust vector eccentricity angles calculated by the dual-plane,Gaussian-fitted ion current density method for different cross-sections.The study not only allows for an immediate and effective tool for determining the design of thrust vector adjustment mechanisms of spacecraft with different power Hall thrusters but also for characterizing the 3D spatial distribution of the Hall thruster plume.展开更多
Castor,scientifically known as Ricinus communis L.,is among the top ten oil crops globally.It is considered a renewable resource and is commonly referred to as‘green oil’.Castor seeds contain castor oil as their mai...Castor,scientifically known as Ricinus communis L.,is among the top ten oil crops globally.It is considered a renewable resource and is commonly referred to as‘green oil’.Castor seeds contain castor oil as their main component,which is predominantly composed of ricinoleic acid.This study utilized RNAi technology to silence the NPC6 gene in NO.2129 castor,resulting in the creation of mutant plants L1 and L2.The weight of 100 dry seed kernels from L1 and L2 exceeds that from NO.2129.The crude fat and ricinoleic acid levels of L1 and L2 were higher than those of NO.2129 at various developmental stages.In the proteomics analysis of 60-day-old castor seeds,a total of 21 differentially expressed proteins were identified,out of which 19 were successfully recognized.Eleven of the differentially expressed proteins identified were legumins,which play a crucial role in nutrient storage within the seed.Silencing the NPC6 gene results in the accumulation of ricinoleic acid in castor seeds.The findings of this study not only enhance our knowledge of NPC6’s role in regulating castor seed oil synthesis but also offer fresh perspectives for investigating oil synthesis and accumulation in other plant species.展开更多
Castor(Ricinus communis L.)is one of ten oil crops in the world and has complex inflorescence styles.Generally,castor has three inflorescence types:single female inflorescence(SiFF),standard female inflorescence(StFF)...Castor(Ricinus communis L.)is one of ten oil crops in the world and has complex inflorescence styles.Generally,castor has three inflorescence types:single female inflorescence(SiFF),standard female inflorescence(StFF)and bisexual inflorescence(BF).StFF is realized as a restorer line and as a maintainer line,which was applied to castor hybrid breeding.However,the developmental mechanism of the three inflorescences is not clear.Therefore,we used proteomic techniques to analyze different inflorescence styles.A total of 72 diferentially abundant protein species(DAPs)were detected.These DAPs are primarily involved in carbon and energy metabolism and carbon fixation in the photosynthetic organism pathway.The results showed that DAPs are involved in photosynthesis to control the distribution of imported carbohydrates and exported photoassimilates and thus affect the inflorescence development of castor.In addition,these DAPs are also involved in cysteine and methionine metabolism.Quantitative real-time PCR(qRT-PCR)results demonstrated that the proteomics data collected in this study were reliable.Our findings indicate that the carbon cycle and amino acid metabolism influence the inflorescence development of castor.展开更多
基金the Agricultural Science and Technology Innovation Program(Grant No.CAAS-ASTIP-2021-ZFRI)China Agriculture Research System of MOF and MARA(Grant No.CARS-25-03)+3 种基金National Nature Science Foundation of China(Grant Nos.31672178 and 31471893)the Natural Science Foundation of Henan Province(Grant No.212300410312)the scientific and technological research in Henan Province(Grant No.202102110398)the key project of the Action of“Rejuvenating Mongolia with Science and Technology”(Grant No.NMKJXM202114).
文摘Watermelon is a highly cultivated fruit crop renowned for its quality properties of fruit flesh.Among various quality factors,fruit flesh firmness is a crucial quality parameter influencing the fruit texture,shelf life and its commercial value.The auxin/indole-3-acetic acid(Aux/IAA)plays a significant role in fruit development and ripening of non-climacteric fruits.However,the regulatory mechanism of Aux/IAA in controlling fruit flesh firmness and ripening in watermelon remains unknown.In this study,we employed an integrative approach combining genome-wide association study(GWAS)and bulked segregant RNA-Seq analysis(BSR-Seq)to identify an overlapping candidate region between 12776310 and 12968331 bp on chromosome 6,underlying an auxin-responsive gene(Aux/IAA)associated with flesh firmness in watermelon.Transcriptome analysis,followed by real-time quantitative reverse transcription PCR(qRT-PCR),confirmed that the expression of Aux/IAA was consistently higher in fruits with high flesh firmness.The sequence alignment revealed a single base mutation in the coding region of Aux/IAA.Furthermore,the concomitant Kompetitive/Competitive allele-specific PCR(KASP)genotyping data sets for F2 population and germplasm accessions identified Aux/IAA as a strong candidate gene associated with flesh firmness.Aux/IAA was enriched in the plant hormone signal transduction pathway,involving cell enlargement and leading to low flesh firmness.We determined the higher accumulation of abscisic acid(ABA)in fruits with low flesh firmness than hard flesh.Moreover,overexpression of Aux/IAA induced higher flesh firmness with an increased number of fruit flesh cells while reducing ABA content and flesh cell sizes.Additionally,the allelic variation in Aux/IAA for soft flesh firmness was found to exist in Citrullus mucosospermus and gradually fixed into Citrullus lanatus during domestication,indicating that soft flesh firmness was a domesticated trait.These findings significantly enhanced our understanding of watermelon fruit flesh firmness and consequently the watermelon fruit quality.
基金funded by the National Natural Science Foundation of China (32171746,31870522,42077450,32371786)the leading talents of basic research in Henan Province+3 种基金Funding for Characteristic and Backbone Forestry Discipline Group of Henan Provincethe Scientific Research Foundation of Henan Agricultural University (30500854)Research Funds for overseas returnee in Henan Province,Chinasupported by National Key Research and Development Program of China (2019YFE0117000)。
文摘Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents.Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant,Xanthium strumarium,and a common native legume,Glycine max.We measured traits related to root and nodule quantity and activity and mycorrhizal colonization.Compared to the monoculture,fine root quantity(biomass,surface area)and activity(root nitrogen(N)concentration,acid phosphatase activity)of G.max decreased in mixed plantings;nodule quantity(biomass)decreased by 45%,while nodule activity in Nfixing via rhizobium increased by 106%;mycorrhizal colonization was unaffected.Contribution of N fixation to leaf N content in G.max increased in the mixed plantings,and this increase was attributed to a decrease in the rhizosphere soil N of G.max in the mixed plantings.Increased root quantity and activity,along with a higher mycorrhizal association was observed in X.strumarium in the mixed compared to monoculture.Together,the invasive plant did not directly scavenge N from nodule-fixed N,but rather depleted the rhizosphere soil N of the legume,thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source.The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions.
基金This research was financially supported by the National Natural Science Foundation of China(Nos.52208384 and 51934001)the National Key Research and Development Program of China(No.2021YFB3401501)the State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,Jianghan University(No.PBSKL2022C05).
文摘In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave field and rock breaking effect in terms of shockwave collision, stress change of the blast hole wall in the collision zone, and crack propagation in the collision zone. The produced shockwave on the collision surface has an intensity surpassing the sum of the intensities of the two colliding explosion shock waves. At the collisionlocation, the kinetic energy is transformed into potential energy with a reduction in particle velocity at the wave front and the wavefront pressure increases. The expansion form of the superposed shock wave is dumbbell-shaped, the shock wave velocity in the collisionarea is greater than the radial shock wave velocity, and the average propagation angle of the explosion shock waves is approximately 60°.Accordingly, a fitted relationship between blast hole wall stress and explosion wave propagation angle in the superposition area is plotted.Under the experimental conditions, the superimposed explosion wave stress of the blast hole wall is approximately 1.73 times the singleexplosionwave incident stress. The results of the model test and numerical simulations reveal that large-scale radial fracture cracks weregenerated on the blast hole wall in the superimposed area, and the width of the crack increased. The width of the large-scale radial fracturecracks formed by a strong impact is approximately 5% of the blast hole length. According to the characteristics of blast hole wallcompression, the mean peak pressures of the strongly superimposed area are approximately 1.48 and 1.84 times those of the weakly superimposedand nonsuperimposed areas, respectively.
基金the following agencies:the Natural Science Foundation of Jilin Province(YDZJ202201ZYTS453)the Scientific Research Project of the Jilin Provincial Department of Education(JJKH20220010KJ)+6 种基金the Program for Innovative Research Team of Baicheng Normal University,the National Natural Science Foundation of China(31860071)the Inner Mongolia Autonomous Region Natural Science Foundation Project(2021MS03008)the Inner Mongolia Autonomous Region Grassland Talent Innovation Team(2022)the 2022 Basic Scientific Research Business Cost Project of Universities Directly under the Autonomous Region(237)the Open Fund Project of Inner Mongolia Castor Industry Collaborative Innovation Center(MDK2021011,MDK2022014,MDK2022008,MDK2021008,MDK2022009,MDK2023003)Fundamental Research Funds for Universities Directly under the Autonomous Region in 2023 of Inner Mongolia University for Nationalities(225,227,243,244)New Agricultural Science Research and Reform Practice Project of the Ministry of Education(2020114)。
文摘The yield of castor is influenced by the type of inflorescence and the proportion of female flowers.However,there are few studies on the genetic mechanism involved in the development and differentiation of castor inflorescences.In this study,we performed transcriptomic analyses of three different phenotypes of inflorescences at the five-leaf stage.In comparison to the MI(complete pistil without willow leaves),290 and 89 differentially expressed genes(DEGs)were found in the SFI(complete pistil with willow leaves)and the BI(monoecious inflorescence),respectively.Among the DEGs,104 and 88 were upregulated in the SFI and BI,respectively,compared to the MI.In addition,186 DEGs and 1 DEG were downregulated in the SFI and BI compared to the MI.Moreover,we conducted GO and KEGG enrichment analyses of the DEGs.In comparison to the MI,the SFI and BI exhibited the enrichment of functional branches in DEGs,specifically in pollen wall assembly,pollen development,and cellular component assembly involved in morphogenesis.In our study,RADL5 showed low expression levels between SFI-vs.-MI types.In addition,we found that the expression of NAC in the SFI differed from that in MI and BI,and some genes related to hormonal signaling changed their expression levels during inflorescence differentiation.These results reveal the genetic mechanism of sex genotypes in castor,which will not only guide researchers in the breeding of castor but also provide a reference for genetic research on other flowering plants.
文摘In order to accurately obtain the dynamic characteristics of the cutting mechanism of the mining longitudinal roadheader,combined with the working principle of the mining longitudinal roadheader,the theoretical analysis and derivation are carried out in detail.By using ADAMS to simulate,the resistance curve and torque curve of the cutting mechanism in different directions are obtained.The results show that ADAMS can effectively predict the excavation resistance and torque of the cutting mechanism of mining longitudinal roadheader,which has certain reference value for future optimization design.
基金financially supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.22175007,21975007,52172080,and 22005012)the National Natural Science Foundation for Outstanding Youth Foundation,the Fundamental Research Funds for the Central Universities,the National Program for Support of Top-notch Young Professionalsthe 111 project(Grant No.B14009).
文摘The rational synergy of chemical composition and spatial nanostructures of electrode materials play important roles in high-performance energy storage devices.Here,we designed pea-like MoS_(2)@NiS_(1.03)-carbon hollow nanofibers using a simple electrospinning and thermal treatment method.The hierarchical hollow nanofiber is composed of a nitrogen-doped carbon-coated NiS_(1.03) tube wall,in which pea-like uniformly discrete MoS_(2) nanoparticles are enclosed.As a sodium-ion battery electrode material,the MoS_(2)@NiS_(1.03)-carbon hollow nanofibers have abundant diphasic heterointerfaces,a conductive network,and appropriate volume variation-buffering spaces,which can facilitate ion diffusion kinetics,shorten the diffusion path of electrons/ion,and buffer volume expansion during Na^(+)insertion/extraction.It shows outstanding rate capacity and long-cycle performance in a sodium-ion battery.This heterogeneous hollow nanoarchitectures designing enlightens an efficacious strategy to boost the capacity and long-life stability of sodium storage performance of electrode materials.
基金supported by the National Key Research and Development Program of China(Nos.2022YFC2903902 and 2022YFC2903903)the National Natural Science Foundation of China(Nos.U1903216 and 52174070).
文摘The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reveal the landslide mechanism,taking the north slope of Fushun West Open-pit Mine as an example,this paper analyzed the failure mechanism of different landslides with monitoring and field surveys,and simulated the evolution of landslides.The study indicated that when the green mudstone(hard rock)of the anti-dip slope contains siltized intercalations(soft rock),the existence of weak layers not only aggravates the toppling deformation of anti-dip layered slope with high dip,but also causes the shear failure of anti-dip layered slope with stable low dip.The shear failure including subsidence induced sliding and wedge failure mainly exists in the unloading zone of the slope.Its failure depth and failure time were far less than that of toppling failure.In terms of the development characteristics of deformation,toppling deformation has the long-term and progressive characteristics,but shear failure deformation has the abrupt and transient characteristics.This study has deepened the understanding of such slope landslide mechanism,and can provide reference for similar engineering.
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2019A1515110582Shenzhen Key Laboratory of Visual Object Detection and Recognition,Grant/Award Number:ZDSYS20190902093015527National Natural Science Foundation of China,Grant/Award Number:61876051。
文摘Deep learning has been widely used in the field of mammographic image classification owing to its superiority in automatic feature extraction.However,general deep learning models cannot achieve very satisfactory classification results on mammographic images because these models are not specifically designed for mammographic images and do not take the specific traits of these images into account.To exploit the essential discriminant information of mammographic images,we propose a novel classification method based on a convolutional neural network.Specifically,the proposed method designs two branches to extract the discriminative features from mammographic images from the mediolateral oblique and craniocaudal(CC)mammographic views.The features extracted from the two-view mammographic images contain complementary information that enables breast cancer to be more easily distinguished.Moreover,the attention block is introduced to capture the channel-wise information by adjusting the weight of each feature map,which is beneficial to emphasising the important features of mammographic images.Furthermore,we add a penalty term based on the fuzzy cluster algorithm to the cross-entropy function,which improves the generalisation ability of the classification model by maximising the interclass distance and minimising the intraclass distance of the samples.The experimental results on The Digital database for Screening Mammography INbreast and MIAS mammography databases illustrate that the proposed method achieves the best classification performance and is more robust than the compared state-ofthe-art classification methods.
基金support of National Natural Science Foundation of China(No.52177144)。
文摘High-voltage pulse discharge(HVPD)rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters,electrode type,etc.In this work,an HVPD rock fragmentation test platform was built and the test waveforms were measured.Considering the effects of temperature,channel expansion and electromagnetic radiation,the impedance model of the plasma channel in the rock was established.The parameters and initial values of the model were determined by an iterative computational process.The model calculation results can reasonably characterize the development of the plasma channel in the rock and estimate the shock wave characteristics.Based on the plasma channel impedance model,the temporal and spatial distribution characteristics of the radial stress and tangential stress in the rock were calculated,and the rock fragmentation effect of the HVPD was analyzed.
基金This study was funded by the National Natural Science Foundation of China(32171746,42077450,31870522 and 31670550)Funding for Characteristic and Backbone Forestry Discipline Group of Henan Province,and the Scientific Research Foundation of Henan Agricultural University(30500854),Research Funds for overseas returnee in Henan Province,China.
文摘The cortex(i.e.,absorptive tissue)and stele(transportive vascular tissue)are fundamental to the function of plant roots.Unraveling how these anatomical structures are assembled in absorptive roots is essential for our understanding of plant ecology,physiology,and plant responses to global environmental changes.In this review,we first compile a large data set on anatomical traits in absorptive roots,including cortex thickness and stele radius,across 698 observations and 512 species.Using this data set,we reveal a common root allometry in absorptive root structures,i.e.,cortex thickness increases much faster than stele radius with increasing root diameter(hereafter,root allometry).Root allometry is further validated within and across plant growth forms(woody,grass,and liana species),mycorrhiza types(arbuscular mycorrhiza,ectomycorrhiza,and orchid mycorrhizas),phylogenetic gradients(from ferns to Orchidaceae),and environmental change scenarios(e.g.,elevation of atmospheric CO_(2)concentration and nitrogen fertilization).These findings indicate that root allometry is common in plants.Importantly,root allometry varies greatly across species.We then summarize recent research on the mechanisms of root allometry and potential issues regarding these mechanisms.We further discuss ecological and evolutionary implications of root allometry.Finally,we propose several important research directions that should be pursued regarding root allometry.
基金supported by the National Natural Science Foundation of China(Grant No.11705086)the National Science Foundation of Hunan Province,China(Grant No.2018JJ3424)the Foundation of Hunan Educational Committee(Grant No.16C1387).
文摘Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process.
基金supported by Aerospace Frontier Inspiration Project (Grant No.KY0505072113) from College of Aerospace Science and Engineering,NUDT,which are gratefully acknowledged by the authors.
文摘The spacecraequipment layout optimization design(SELOD)problems with complicated performance con-straints and diversity are studied in this paper.The previous literature uses the gradient-based algorithm to obtain optimized non-overlap layout schemes from randomly initialized cases eectively.However,these local optimal solutions are too dicult to jump out of their current relative geometry relationships,signicantly limiting their further improvement in performance indicators.Therefore,considering the geometric diversity of layout schemes is put forward to alleviate this limitation.First,similarity measures,including modied cosine similarity and gaussian kernel function similarity,are introduced into the layout optimization process.Then the optimization produces a set of feasible layout candidates with the most remarkable dierence in geometric distribution and the most representative schemes are sampled.Finally,these feasible geometric solutions are used as initial solutions to optimize the physical performance indicators of the spacecra,and diversied layout schemes of spacecraequipment are generated for the engineering practice.The validity and eectiveness of the proposed methodology are demonstrated by two SELOD applications.
基金the Key Laboratory Funds for Science and Technology on Vacuum Technology and Physics Laboratory(No.HTKJ2022KL510002)the Military Test Instruments Program(No.2006ZCTF0054)。
文摘The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thrusters on spacecraft.For the characteristics of the plume bipolar diffusion due to the annular discharge channel of the Hall thruster,a Gaussian-fitted method for thrust vector deviation angle and beam divergence of Hall thrusters based on dual Faraday probe array planes was proposed in respect of the Hall thruster beam characteristics.The results show that the ratios of the deviation between the maximum and minimum values of the beam divergence angle and the thrust vector eccentricity angle using a Gaussian fit to the optimized Faraday probe dual plane to the mean value are 1.4%and 11.5%,respectively.The optimized thrust vector eccentricity angle obtained has been substantially improved,by approximately 20%.The beam divergence angle calculated using a Gaussian fitting to the optimized Faraday probe dual plane is approximately identical to the non-optimized one.The beam divergence and thrust vector eccentricity angles for different anode mass flow rates were obtained by averaging the beam divergence and thrust vector eccentricity angles calculated by the dual-plane,Gaussian-fitted ion current density method for different cross-sections.The study not only allows for an immediate and effective tool for determining the design of thrust vector adjustment mechanisms of spacecraft with different power Hall thrusters but also for characterizing the 3D spatial distribution of the Hall thruster plume.
基金supported by the following agencies:Natural Science Foundation of Jilin Province (YDZJ202201ZYTS453)Scientific Research Project of the Jilin Provincial Department of Education (JJKH20220010KJ)+6 种基金supported by Program for Innovative Research Team of Baicheng Normal University,National Natural Science Foundation of China (31860071)Inner Mongolia Autonomous Region Natural Science Foundation Project (2021MS03008)Inner Mongolia Autonomous Region Grassland Talent Innovation Team (2022)2022 Basic Scientific Research Business Cost Project of Universities Directly under the Autonomous Region (237)Open Fund Project of Inner Mongolia Castor Industry Collaborative Innovation Center (MDK2021011,MDK2022014,MDK2022008,MDK2021008,MDK2022009)Fundamental Research Funds for Universities Directly under the Autonomous Region in 2023 of Inner Mongolia University for Nationalities (225,227,243,244)New Agricultural Science Research and Reform Practice Project of the Ministry of Education (2020114)。
文摘Castor,scientifically known as Ricinus communis L.,is among the top ten oil crops globally.It is considered a renewable resource and is commonly referred to as‘green oil’.Castor seeds contain castor oil as their main component,which is predominantly composed of ricinoleic acid.This study utilized RNAi technology to silence the NPC6 gene in NO.2129 castor,resulting in the creation of mutant plants L1 and L2.The weight of 100 dry seed kernels from L1 and L2 exceeds that from NO.2129.The crude fat and ricinoleic acid levels of L1 and L2 were higher than those of NO.2129 at various developmental stages.In the proteomics analysis of 60-day-old castor seeds,a total of 21 differentially expressed proteins were identified,out of which 19 were successfully recognized.Eleven of the differentially expressed proteins identified were legumins,which play a crucial role in nutrient storage within the seed.Silencing the NPC6 gene results in the accumulation of ricinoleic acid in castor seeds.The findings of this study not only enhance our knowledge of NPC6’s role in regulating castor seed oil synthesis but also offer fresh perspectives for investigating oil synthesis and accumulation in other plant species.
基金This study was supported by the National Natural Science Foundation of China(31860071)Research and Reform Practice Project in New Agricultural Sciences of the Ministry of Education in 2020(2020114)+7 种基金Natural Science Foundation of Inner Mongolia Autonomous Region(2021MS03008)Inner Mongolia Autonomous Region Grassland Talents Innovation Team—Castor Molecular Breeding Research Innovative Talent Team Rolling Support Project(2022)Higher Education Teaching Reform Research Project of National Ethnic Affairs Commission in 2021(21082)Fundamental Research Funds in Higher Education Institutions of Inner Mongolia in 2022(237)Autonomous Region Basic Scientific Reasearch Business Fee Projest of Inner Mongolia MinZu University in 2023(225,227,244)Inner Mongolia Autonomous Region Castor Industry Collaborative Innovation Center Construction Project(MDK2021011,MDK2022014)Open Fund Project in State Key Laboratory of Castor Breeding of China’s National Ethnic Affairs Commission(MDK2021008)Science and Technology Research Project of Jilin Provincial Department of Education(JJKH20220010KJ).
文摘Castor(Ricinus communis L.)is one of ten oil crops in the world and has complex inflorescence styles.Generally,castor has three inflorescence types:single female inflorescence(SiFF),standard female inflorescence(StFF)and bisexual inflorescence(BF).StFF is realized as a restorer line and as a maintainer line,which was applied to castor hybrid breeding.However,the developmental mechanism of the three inflorescences is not clear.Therefore,we used proteomic techniques to analyze different inflorescence styles.A total of 72 diferentially abundant protein species(DAPs)were detected.These DAPs are primarily involved in carbon and energy metabolism and carbon fixation in the photosynthetic organism pathway.The results showed that DAPs are involved in photosynthesis to control the distribution of imported carbohydrates and exported photoassimilates and thus affect the inflorescence development of castor.In addition,these DAPs are also involved in cysteine and methionine metabolism.Quantitative real-time PCR(qRT-PCR)results demonstrated that the proteomics data collected in this study were reliable.Our findings indicate that the carbon cycle and amino acid metabolism influence the inflorescence development of castor.