期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dislocation mechanism of Ni_(47)Co_(53) alloy during rapid solidification
1
作者 刘云春 梁永超 +5 位作者 陈茜 张利 马家君 王蓓 高廷红 谢泉 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期410-419,共10页
Dislocations and other atomic-level defects play a crucial role in determining the macroscopic properties of crystalline materials,but it is extremely difficult to observe the evolution of dislocations due to the limi... Dislocations and other atomic-level defects play a crucial role in determining the macroscopic properties of crystalline materials,but it is extremely difficult to observe the evolution of dislocations due to the limitations of the most advanced experimental techniques.Therefore,in this work,the rapid solidification processes of Ni_(47)Co_(53) alloy at five cooling rates are studied by molecular dynamics simulation,and the evolutions of their microstructures and dislocations are investigated as well.The results show that face-centered cubic(FCC) structures are formed at the low cooling rate,and the crystalline and amorphous mixture appear at the critical cooling rate,and the amorphous are generated at the high cooling rate.The crystallization temperature and crystallinity decrease with cooling rate increasing.Dislocations are few at the cooling rates of 1×10^(11) K/s,5×10^(12) K/s,and 1×10^(13) K/s,and they are most abundant at the cooling rates of 5×10^(11) K/s and1 × 10^(12) K/s,in which their dislocation line lengths are both almost identical.There appear a large number of dislocation reactions at both cooling rates,in which the interconversion between perfect and partial dislocations is primary.The dislocation reactions are more intense at the cooling rate of 5×10^(11) K/s,and the slip of some dislocations leads to the interconversion between FCC structure and hexagonal close packed(HCP) structure,which causes the twin boundaries(TBs) to disappear.The FCC and HCP are in the same atomic layer,and dislocations are formed at the junction due to the existence of TBs at the cooling rate of 1 ×10^(12) K/s.The present research is important in understanding the dislocation mechanism and its influence on crystal structure at atomic scales. 展开更多
关键词 molecular dynamics simulation rapid solidification crystal structure dislocation interaction
下载PDF
Modulation of Schottky barrier in XSi_(2)N_(4)/graphene(X=Mo and W)heterojunctions by biaxial strain 被引量:1
2
作者 Qian liang Xiang-Yan Luo +2 位作者 Yi-Xin Wang yong-chao liang Quan Xie 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期578-586,共9页
Reducing the Schottky barrier height(SBH)and even achieving the transition from Schottky contacts to Ohmic contacts are key challenges of achieving high energy efficiency and high-performance power devices.In this pap... Reducing the Schottky barrier height(SBH)and even achieving the transition from Schottky contacts to Ohmic contacts are key challenges of achieving high energy efficiency and high-performance power devices.In this paper,the modulation effects of biaxial strain on the electronic properties and Schottky barrier of Mo Si_(2)N_(4)(MSN)/graphene and WSi_(2)N_(4)(WSN)/graphene heterojunctions are examined by using first principles calculations.After the construction of heterojunctions,the electronic structures of MSN,WSN,and graphene are well preserved.Herein,we show that by applying suitable external strain to a heterojunction stacked by MSN or WSN—an emerging two-dimensional(2D)semiconductor family with excellent mechanical properties—and graphene,the heterojunction can be transformed from Schottky ptype contacts into n-type contacts,even highly efficient Ohmic contacts,making it of critical importance to unleash the tremendous potentials of graphene-based van der Waals(vd W)heterojunctions.Not only are these findings invaluable for designing high-performance graphene-based electronic devices,but also they provide an effective route to realizing dynamic switching either between n-type and p-type Schottky contacts,or between Schottky contacts and Ohmic contacts. 展开更多
关键词 MoSi_(2)N_(4) Schottky barrier height HETEROJUNCTION biaxial strain
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部