Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l...Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.展开更多
Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nano...Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nanoscale to macroscale.This technique offers excellent manufacturing flexibility,geometric designability,cost-effectiveness,and eco-friendliness.Recent studies have focused on the utilization of 3D-printed critical materials for EESDs,which have demonstrated remarkable electrochemical performances,including high energy densities and rate capabilities,attributed to improved ion/electron transport abilities and fast kinetics.However,there is a lack of comprehensive reviews summarizing and discussing the recent advancements in the structural design and application of 3D-printed critical materials for EESDs,particularly rechargeable batteries.In this review,we primarily concentrate on the current progress in 3D printing(3DP)critical materials for emerging batteries.We commence by outlining the key characteristics of major 3DP methods employed for fabricating EESDs,encompassing design principles,materials selection,and optimization strategies.Subsequently,we summarize the recent advancements in 3D-printed critical materials(anode,cathode,electrolyte,separator,and current collector)for secondary batteries,including conventional Li-ion(LIBs),Na-ion(SIBs),K-ion(KIBs)batteries,as well as Li/Na/K/Zn metal batteries,Zn-air batteries,and Ni–Fe batteries.Within these sections,we discuss the 3DP precursor,design principles of 3D structures,and working mechanisms of the electrodes.Finally,we address the major challenges and potential applications in the development of 3D-printed critical materials for rechargeable batteries.展开更多
High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS...High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS_(2)lead to unacceptable ion transport capability.Here,we propose in-situ construction of interlayer electrostatic repulsion caused by Co^(2+)substituting Mo^(4+)between MoS_(2)layers,which can break the limitation of interlayer van der Waals forces to fabricate monolayer MoS_(2),thus establishing isotropic ion transport paths.Simultaneously,the doped Co atoms change the electronic structure of monolayer MoS_(2),thus improving its intrinsic conductivity.Importantly,the doped Co atoms can be converted into Co nanoparticles to create a space charge region to accelerate ion transport.Hence,the Co-doped monolayer MoS_(2)shows ultrafast lithium ion transport capability in half/full cells.This work presents a novel route for the preparation of monolayer MoS_(2)and demonstrates its potential for application in fast-charging lithium-ion batteries.展开更多
锂金属具有氧化还原电位低、理论比容量大等优点,是下一代高比能电池极具发展前景的负极.然而,锂枝晶生长和低可逆性严重阻碍了高比能锂金属电池的发展.受启发于生物细胞膜结构,本文采用涂布法在锂金属表面成功构筑了一种具有仿生离子...锂金属具有氧化还原电位低、理论比容量大等优点,是下一代高比能电池极具发展前景的负极.然而,锂枝晶生长和低可逆性严重阻碍了高比能锂金属电池的发展.受启发于生物细胞膜结构,本文采用涂布法在锂金属表面成功构筑了一种具有仿生离子通道的人工界面固体电解质层(CAL).该CAL中大量带负电荷的离子通道可以促进锂离子均匀、快速的输运,有利于稳定、均匀地进行锂沉积/剥离.此外,在循环过程中,CAL底部与锂金属发生原位转化反应,生成了一层富含亲锂性无机组分的过渡层,促进了锂离子的扩散并抑制了锂金属与电解液的连续副反应.因此,形成的具有双面神结构的人工界面固体电解质层(CAJL)使得锂金属负极可以在10 mA cm^(-2)的高电流密度和10 mAh cm^(-2)的高面积容量下长期稳定循环.更重要的是,基于CAJL功能化锂金属负极的锂硫软包电池实现了429.2 Wh kg^(-1)的高能量密度.展开更多
Aqueous zinc-ion batteries(AZIBs) have aroused significant research interest around the world in the past decade. The use of low-cost aqueous electrolytes and a metallic Zn anode with a suitable redox potential and hi...Aqueous zinc-ion batteries(AZIBs) have aroused significant research interest around the world in the past decade. The use of low-cost aqueous electrolytes and a metallic Zn anode with a suitable redox potential and high energy density make AZIBs a potential alternative to commercial Li-ion batteries in the development of next-generation batteries. However, owing to the narrow electrochemical stability window(ESW) of aqueous electrolytes, the choice of cathode materials is limited, because of which AZIBs exhibit a relatively low operating voltage and energy density. Hence, expanding the ESW of aqueous electrolytes is important for the development of practical AZIBs. This paper systematically reviews the electrolyte engineering strategies being explored to broaden the ESW of AZIBs. An in-depth analysis of high-voltage AZIBs is also presented. We suggest that the realization of high-voltage AZIBs depends on the synergistic development of suitable electrolytes and cathode materials. In addition, the cost associated with their fabrication as well as the use of standardized electrochemical tests should be considered during the design of high-voltage AZIBs.展开更多
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
基金This work was financially supported by Stable Support Plan Program for Higher Education Institutions(20220815094504001)Shenzhen Key Laboratory of Advanced Energy Storage(ZDSYS20220401141000001)+1 种基金This work was also financially supported by the Shenzhen Science and Technology Innovation Commission(GJHZ20200731095606021,20200925155544005)the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone(HZQB-KCZYB-2020083)。
文摘Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.
基金supported by Stable Support Plan Program for Higher Education Institutions(20220815094504001)Shenzhen Key Laboratory of Advanced Energy Storage(No.ZDSYS20220401141000001).
文摘Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nanoscale to macroscale.This technique offers excellent manufacturing flexibility,geometric designability,cost-effectiveness,and eco-friendliness.Recent studies have focused on the utilization of 3D-printed critical materials for EESDs,which have demonstrated remarkable electrochemical performances,including high energy densities and rate capabilities,attributed to improved ion/electron transport abilities and fast kinetics.However,there is a lack of comprehensive reviews summarizing and discussing the recent advancements in the structural design and application of 3D-printed critical materials for EESDs,particularly rechargeable batteries.In this review,we primarily concentrate on the current progress in 3D printing(3DP)critical materials for emerging batteries.We commence by outlining the key characteristics of major 3DP methods employed for fabricating EESDs,encompassing design principles,materials selection,and optimization strategies.Subsequently,we summarize the recent advancements in 3D-printed critical materials(anode,cathode,electrolyte,separator,and current collector)for secondary batteries,including conventional Li-ion(LIBs),Na-ion(SIBs),K-ion(KIBs)batteries,as well as Li/Na/K/Zn metal batteries,Zn-air batteries,and Ni–Fe batteries.Within these sections,we discuss the 3DP precursor,design principles of 3D structures,and working mechanisms of the electrodes.Finally,we address the major challenges and potential applications in the development of 3D-printed critical materials for rechargeable batteries.
基金financially supported by Shenzhen Key Laboratory of Advanced Energy Storage(No.ZDSYS20220401141000001)the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.R6005-20)。
文摘High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS_(2)lead to unacceptable ion transport capability.Here,we propose in-situ construction of interlayer electrostatic repulsion caused by Co^(2+)substituting Mo^(4+)between MoS_(2)layers,which can break the limitation of interlayer van der Waals forces to fabricate monolayer MoS_(2),thus establishing isotropic ion transport paths.Simultaneously,the doped Co atoms change the electronic structure of monolayer MoS_(2),thus improving its intrinsic conductivity.Importantly,the doped Co atoms can be converted into Co nanoparticles to create a space charge region to accelerate ion transport.Hence,the Co-doped monolayer MoS_(2)shows ultrafast lithium ion transport capability in half/full cells.This work presents a novel route for the preparation of monolayer MoS_(2)and demonstrates its potential for application in fast-charging lithium-ion batteries.
基金financially supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(T23-601/17-R)supported by the Fundamental Research Funds for the Central Universities(D5000220443)。
文摘锂金属具有氧化还原电位低、理论比容量大等优点,是下一代高比能电池极具发展前景的负极.然而,锂枝晶生长和低可逆性严重阻碍了高比能锂金属电池的发展.受启发于生物细胞膜结构,本文采用涂布法在锂金属表面成功构筑了一种具有仿生离子通道的人工界面固体电解质层(CAL).该CAL中大量带负电荷的离子通道可以促进锂离子均匀、快速的输运,有利于稳定、均匀地进行锂沉积/剥离.此外,在循环过程中,CAL底部与锂金属发生原位转化反应,生成了一层富含亲锂性无机组分的过渡层,促进了锂离子的扩散并抑制了锂金属与电解液的连续副反应.因此,形成的具有双面神结构的人工界面固体电解质层(CAJL)使得锂金属负极可以在10 mA cm^(-2)的高电流密度和10 mAh cm^(-2)的高面积容量下长期稳定循环.更重要的是,基于CAJL功能化锂金属负极的锂硫软包电池实现了429.2 Wh kg^(-1)的高能量密度.
基金financially supported by Shenzhen Fundamental Research Programs (Nos. JCYJ20190809143815709 and JCYJ20200109141216566)Guangdong Natural Science Foundation (No. 2021A1515010412)+1 种基金the China Scholarship Council (CSC)Shenzhen Key Laboratory of Advanced Energy Storage (No. 202204013000060)。
文摘Aqueous zinc-ion batteries(AZIBs) have aroused significant research interest around the world in the past decade. The use of low-cost aqueous electrolytes and a metallic Zn anode with a suitable redox potential and high energy density make AZIBs a potential alternative to commercial Li-ion batteries in the development of next-generation batteries. However, owing to the narrow electrochemical stability window(ESW) of aqueous electrolytes, the choice of cathode materials is limited, because of which AZIBs exhibit a relatively low operating voltage and energy density. Hence, expanding the ESW of aqueous electrolytes is important for the development of practical AZIBs. This paper systematically reviews the electrolyte engineering strategies being explored to broaden the ESW of AZIBs. An in-depth analysis of high-voltage AZIBs is also presented. We suggest that the realization of high-voltage AZIBs depends on the synergistic development of suitable electrolytes and cathode materials. In addition, the cost associated with their fabrication as well as the use of standardized electrochemical tests should be considered during the design of high-voltage AZIBs.