The continent is the second largest carbon sink on Earth’s surface.With the diversification of vascular land plants in the late Paleozoic,terrestrial organic carbon burial is represented by massive coal formation,whi...The continent is the second largest carbon sink on Earth’s surface.With the diversification of vascular land plants in the late Paleozoic,terrestrial organic carbon burial is represented by massive coal formation,while the development of soil profiles would account for both organic and inorganic carbon burial.As compared with soil organic carbon,inorganic carbon burial,collectively known as the soil carbonate,would have a greater impact on the long-term carbon cycle.Soil carbonate would have multiple carbon sources,including dissolution of host calcareous rocks,dissolved inorganic carbon from freshwater,and oxidation of organic matter,but the host calcareous rock dissolution would not cause atmospheric CO2drawdown.Thus,to evaluate the potential effect of soil carbonate formation on the atmospheric p CO2level,different carbon sources of soil carbonate should be quantitatively differentiated.In this study,we analyzed the carbon and magnesium isotopes of pedogenic calcite veins developed in a heavily weathered outcrop,consisting of limestone of the early Paleogene Guanzhuang Group in North China.Based on the C and Mg isotope data,we developed a numerical model to quantify the carbon source of calcite veins.The modeling results indicate that4–37 wt%of carbon in these calcite veins was derived from atmospheric CO2.The low contribution from atmospheric CO2might be attributed to the host limestone that might have diluted the atmospheric CO2sink.Nevertheless,taking this value into consideration,it is estimated that soil carbonate formation would lower 1 ppm atmospheric CO2within 2000 years,i.e.,soil carbonate alone would sequester all atmospheric CO2within 1 million years.Finally,our study suggests the C–Mg isotope system might be a better tool in quantifying the carbon source of soil carbonate.展开更多
It is a consensus that marine carbonate archives the isotopic composition of seawater dissolved inorganic carbon(DIC,δ13Csw),the largest active C reservoir in the hydrosphere.Carbonate carbon isotope(δ13Ccarb)excurs...It is a consensus that marine carbonate archives the isotopic composition of seawater dissolved inorganic carbon(DIC,δ13Csw),the largest active C reservoir in the hydrosphere.Carbonate carbon isotope(δ13Ccarb)excursions have been used to reflect perturbations of the global carbon cycle and related environmental change.However,the deep timeδ13Ccarb records indicate faster and more pronounced perturbations of the carbon cycle compared to the present day.Here,we reportδ13Ccarb and elemental compositions of Late Paleozoic carbonate sections from South China,showing negative correlations betweenδ13-Ccarb and Fe^(2+)content of carbonate(Fecarb).We suggest that,because Late Paleozoic carbonate was mainly produced by benthic carbonate-secreting organisms,δ13Ccarbrecorded the isotopic composition near the seafloor,where benthic flux derived from anaerobic organic matter degradation delivers both Fe2+and 13C-depleted DIC from porewater.The binary mixing between seawater and benthic flux would result in the deviation ofδ13Ccarb fromδ13Csw.The negative correlation implies thatδ13Ccarb is influenced by benthic flux and is affected by the seafloor redox and sedimentation rate.The deep time spatially heterogeneous and temporally oscillatoryδ13Ccarb records in the basin-scale could be alternatively attributed to the variations of local environmental factors rather than aδ13Csw depth-gradient.Thus,the seafloor carbonate precipitation is continuously affected by diagenetic reactions in sediments,suggesting thatδ13Ccarb recording the seawater DIC composition is conditional.Our study urges that the interpretation ofδ13Ccarb should also consider the sedimentary process and depositional environment of marine carbonate.展开更多
Understanding the origin of ocean island basalts(OIB) has important bearings on Earth's deep mantle.Although it is widely accepted that subducted oceanic crust, as a consequence of plate tectonics, contributes mat...Understanding the origin of ocean island basalts(OIB) has important bearings on Earth's deep mantle.Although it is widely accepted that subducted oceanic crust, as a consequence of plate tectonics, contributes material to OIB's formation, its exact fraction in OIB's mantle source remains ambiguous largely due to uncertainties associated with existing geochemical proxies. Here we show, through theoretical calculation, that unlike many known proxies, triple oxygen isotope compositions(i.e.D^(17 )O) in olivine samples are not affected by crystallization and partial melting. This unique feature, therefore, allows olivine D^(17 )O values to identify subducted oceanic crusts in OIB's mantle source. Furthermore, the fractions of subducted ocean sediments and hydrothermally altered oceanic crust in OIB's mantle source can be quantified using their characteristic D^(17 )O values. Based on published D^(17 )O data, we estimated the fraction of subducted oceanic crust to be as high as 22.3% in certain OIB, but the affected region in the respective mantle plume is likely to be limited.展开更多
In response to the challenge inherent in classical high-dimensional models of random ground motions, a family of simulation methods for nonstationary seismic ground motions was developed previously through employing a...In response to the challenge inherent in classical high-dimensional models of random ground motions, a family of simulation methods for nonstationary seismic ground motions was developed previously through employing a wave-group propagation formulation with phase spectrum model built up on the frequency components’ starting-time of phase evolution. The present paper aims at extending the formulation to the simulation of non-stationary random seismic ground motions. The ground motion records associated with N–S component of Northridge Earthquake at the type-II site are investigated. The frequency components’ starting-time of phase evolution of is identified from the ground motion records, and is proved to admit the Gamma distribution through data fitting. Numerical results indicate that the simulated random ground motion features zeromean, non-stationary, and non-Gaussian behaviors, and the phase spectrum model with only a few starting-times of phase evolution could come up with a sound contribution to the simulation.展开更多
In this study, biochars from rice straw (Oryza sativa L.) were prepared at 200-600 ℃ by oxygen-limited pyrolysis to investigate the changes in properties of rice straw biochars produced at different temperatures, a...In this study, biochars from rice straw (Oryza sativa L.) were prepared at 200-600 ℃ by oxygen-limited pyrolysis to investigate the changes in properties of rice straw biochars produced at different temperatures, and to examine the adsorption capacities of the biochars for a heavy metal, copper(II) (Cu(II)), and an organic insecticide of cyromazine, as well as to further reveal the adsorption mechanisms. The results obtained with batch experiments showed that the amount of Cu(II) adsorbed varied with the pyrolysis temperatures of rice straw biochar. The biochar produced at 400 ~C had the largest adsorption capacity for Cu(II) (0.37 mol kg-1) among the biochars, with the non-electrostatic adsorption as the main adsorption mechanism. The highest adsorption capacity for cyromazine (156.42 g kg-1) was found in the rice straw biochar produced at 600 ℃, and cyromazine adsorption was exclusively predominated by surface adsorption. An obvious competitive adsorption was found between 5 mmol L-1 Cu(II) and 2 g L-1 cyromazine when they were in the binary solute system. Biochar may be used to remediate heavy metal- and organic insecticide-contaminated water, while the pyrolysis temperature of feedstocks for producing biochar should be considered for the restoration of multi-contamination.展开更多
Global occurrences of Steptoean Positive Carbon Isotope Excursion(SPICE) during Late Cambrian recorded a significant perturbation in marine carbon cycle, and might have had profound impacts on the biological evoluti...Global occurrences of Steptoean Positive Carbon Isotope Excursion(SPICE) during Late Cambrian recorded a significant perturbation in marine carbon cycle, and might have had profound impacts on the biological evolution. In previous studies, SPICE has been reported from the Jiangnan slope belt in South China. To evaluate the bathymetric extent of SPICE, we investigate the limestone samples from the upper Qingxi Formation in the Shaijiang Section in the Jiangnan Basin. Our results show the positive excursions for both carbonate carbon(δ^(13)C) and organic carbon(δ^(13)C_(org)) isotopes, as well as the concurrent positive shifts in sulfur isotopes of carbonate associated sulfate(CAS, δ^(34)S_(CAS)) and pyrite(δ^(34)S_(pyrite)), unequivocally indicating the presence of SPICE in the Jiangnan Basin. A 4‰ increase in δ^(13)C_(carb) of the Qingxi limestone implies the increase of the relative flux of organic carbon burial by a factor of two. Concurrent positive excursions in δ^(34)S_(CAS) and δ^(34)S_(pyrite) have been attributed to the enhanced pyrite burial in oceans with extremely low concentration and spatially heterogeneous isotopic composition of seawater sulfate. Here, we propose that the seawater sulfur isotopic heterogeneity can be generated by volatile organic sulfur compound(VOSC, such as methanethiol and dimethyl sulfide) formation in sulfidic continental margins that were widespread during SPICE. Emission of 32S-enriched VOSC in atmosphere, followed by lateral transportation and aerobic oxidation in atmosphere, and precipitation in open oceans result in a net flux of ^(32)S from continental margins to open oceans, elevating δ^(34)S of seawater sulfate in continental margins. A simple box model indicates that about 35% to 75% of seawater sulfate in continental margins needs to be transported to open oceans via VOSC formation.展开更多
Phosphorite nodule beds are discovered in the black shale of basal Niutitang Formation throughout the Yangtze Platform in South China, recording an important phosphorite-generation event. Platform-wide phosphorite pre...Phosphorite nodule beds are discovered in the black shale of basal Niutitang Formation throughout the Yangtze Platform in South China, recording an important phosphorite-generation event. Platform-wide phosphorite precipitation requires special oceanographic and geochemical conditions, thus the origin of the Niutitang phosphorite nodules may provide valuable information about the ocean chemistry in the Early Cambrian. In this study, we measured sulfur and oxygen isotopic compositions of sulfate extracted from phosphorite nodules collected from the basal Niutitang Formation. Phosphorite associated sulfate(PAS) is a trace amount of sulfate that incorporates into crystal lattice during phosphorite precipitation, accordingly PAS records the geochemical signals during phosphorite nodule formation. Sulfur isotopic composition of PAS(δ^(34)S_(PAS)) ranges from-1.16‰ to +24.48‰(mean=+8.19‰, n=11), and oxygen isotopic value(δ^(18)O_(PAS)) varies between-5.3‰ and +26.3‰(mean=+7.0‰, n=8). Most phosphorite nodules have low δ^(34)SPAS and low δ^(18)O_(PAS) values, suggesting PAS mainly derived from anaerobic oxidation of H_2S within suboxic sediment porewater. We propose that phosphate was delivered to the Yangtze Platform by a series of upwelling events, and was scavenged from seawater with the precipitation of FeOOH. The absorbed phosphate was released into suboxic porewater by the reduction of FeOOH at the oxic-suboxic redox boundary in sediments, and phosphorite nodule precipitated by the reaction of phosphate with Ca^(2+) diffused from the overlying seawater. The platform-wide deposition of phosphorite nodules in the basal Niutitang Formation implies the bottom water might be suboxic or even oxic, at least sporadically, in Early Cambrian. We speculate that the intensified ocean circulation as evident with frequent occurrences of upwelling events might be the primary reason for the episodic oxidation of the Yangtze Platform in Early Cambrian.展开更多
Dear Editor,Artemisinin and its derivatives(AIDs)have recently been widely applied in cancer therapy as promising therapeutic agents owing to its hypotoxicity and special bioactivation pathways.Though numerous strateg...Dear Editor,Artemisinin and its derivatives(AIDs)have recently been widely applied in cancer therapy as promising therapeutic agents owing to its hypotoxicity and special bioactivation pathways.Though numerous strategies have been established to improve the potency of AIDs,they are still relatively inefficacious against cancers,especially as a monotherapy.^(1)It is thus essential to develop novel approaches to considerably enhance their anticancer efficacy.We hypothesized that aptamers with specific recognition,high-affinity binding,and receptor-mediated internalization would promote the accumulation of AIDs inside the target cells and lead to death of the target cancer cells.^(2)展开更多
The nitrogen isotope compositions(δ^(15)N )of sedimentary rocks can provide information about the nutrient N cycling and redox conditions that may have played important roles in biological evolution in Earth’s histo...The nitrogen isotope compositions(δ^(15)N )of sedimentary rocks can provide information about the nutrient N cycling and redox conditions that may have played important roles in biological evolution in Earth’s history.Although considerableδ^(15)N data for the Precambrian have been published,there is a large gap during the Early Neoproterozoic that restrains our understanding of the linkages among N cycling,ocean redox changes and biological evolution during this key period.Here,we report bulkδ^(15)N and organic carbon isotope(^(δ)13C_(org))compositions as well as the total nitrogen(TN)and total organic carbon(TOC)contents from the Tonian fossiliferous Liulaobei Formation in the southern part of the North China Platform.Theδ^(15)N in the study section is dominated by very stable values centering around+4.3‰,which is moderately lower than that in modern sediments(~+6‰).These positiveδ^(15)N values were attributed to partial denitrification under low primary productivity(scenario 1)and/or denitrification coupled with dissimilatory nitrate reduction to ammonium(DNRA)(scenario 2).In either case,the availability of fixed nitrogen may have provided the nutrient N required to facilitate facilitated eukaryotic growth.Our study highlights the pivotal role of nutrient N in the evolution of eukaryotes.展开更多
基金funded by the National Key Technology Program during the 13th Five-Year Plan Period (Grant No. 2016ZX05034001-007)National Natural Science Foundation of China (Grant No. 41772359)
文摘The continent is the second largest carbon sink on Earth’s surface.With the diversification of vascular land plants in the late Paleozoic,terrestrial organic carbon burial is represented by massive coal formation,while the development of soil profiles would account for both organic and inorganic carbon burial.As compared with soil organic carbon,inorganic carbon burial,collectively known as the soil carbonate,would have a greater impact on the long-term carbon cycle.Soil carbonate would have multiple carbon sources,including dissolution of host calcareous rocks,dissolved inorganic carbon from freshwater,and oxidation of organic matter,but the host calcareous rock dissolution would not cause atmospheric CO2drawdown.Thus,to evaluate the potential effect of soil carbonate formation on the atmospheric p CO2level,different carbon sources of soil carbonate should be quantitatively differentiated.In this study,we analyzed the carbon and magnesium isotopes of pedogenic calcite veins developed in a heavily weathered outcrop,consisting of limestone of the early Paleogene Guanzhuang Group in North China.Based on the C and Mg isotope data,we developed a numerical model to quantify the carbon source of calcite veins.The modeling results indicate that4–37 wt%of carbon in these calcite veins was derived from atmospheric CO2.The low contribution from atmospheric CO2might be attributed to the host limestone that might have diluted the atmospheric CO2sink.Nevertheless,taking this value into consideration,it is estimated that soil carbonate formation would lower 1 ppm atmospheric CO2within 2000 years,i.e.,soil carbonate alone would sequester all atmospheric CO2within 1 million years.Finally,our study suggests the C–Mg isotope system might be a better tool in quantifying the carbon source of soil carbonate.
基金supported by the National Science Foundation of China(No.41772015 to Sun and No.41772359 to Shen)。
文摘It is a consensus that marine carbonate archives the isotopic composition of seawater dissolved inorganic carbon(DIC,δ13Csw),the largest active C reservoir in the hydrosphere.Carbonate carbon isotope(δ13Ccarb)excursions have been used to reflect perturbations of the global carbon cycle and related environmental change.However,the deep timeδ13Ccarb records indicate faster and more pronounced perturbations of the carbon cycle compared to the present day.Here,we reportδ13Ccarb and elemental compositions of Late Paleozoic carbonate sections from South China,showing negative correlations betweenδ13-Ccarb and Fe^(2+)content of carbonate(Fecarb).We suggest that,because Late Paleozoic carbonate was mainly produced by benthic carbonate-secreting organisms,δ13Ccarbrecorded the isotopic composition near the seafloor,where benthic flux derived from anaerobic organic matter degradation delivers both Fe2+and 13C-depleted DIC from porewater.The binary mixing between seawater and benthic flux would result in the deviation ofδ13Ccarb fromδ13Csw.The negative correlation implies thatδ13Ccarb is influenced by benthic flux and is affected by the seafloor redox and sedimentation rate.The deep time spatially heterogeneous and temporally oscillatoryδ13Ccarb records in the basin-scale could be alternatively attributed to the variations of local environmental factors rather than aδ13Csw depth-gradient.Thus,the seafloor carbonate precipitation is continuously affected by diagenetic reactions in sediments,suggesting thatδ13Ccarb recording the seawater DIC composition is conditional.Our study urges that the interpretation ofδ13Ccarb should also consider the sedimentary process and depositional environment of marine carbonate.
基金funding supports from the strategic priority research program (B) of Chinese Academy ofSciences (XDB18010104) and (XDB18010100)Chinese NSF Project (41490635)
文摘Understanding the origin of ocean island basalts(OIB) has important bearings on Earth's deep mantle.Although it is widely accepted that subducted oceanic crust, as a consequence of plate tectonics, contributes material to OIB's formation, its exact fraction in OIB's mantle source remains ambiguous largely due to uncertainties associated with existing geochemical proxies. Here we show, through theoretical calculation, that unlike many known proxies, triple oxygen isotope compositions(i.e.D^(17 )O) in olivine samples are not affected by crystallization and partial melting. This unique feature, therefore, allows olivine D^(17 )O values to identify subducted oceanic crusts in OIB's mantle source. Furthermore, the fractions of subducted ocean sediments and hydrothermally altered oceanic crust in OIB's mantle source can be quantified using their characteristic D^(17 )O values. Based on published D^(17 )O data, we estimated the fraction of subducted oceanic crust to be as high as 22.3% in certain OIB, but the affected region in the respective mantle plume is likely to be limited.
文摘In response to the challenge inherent in classical high-dimensional models of random ground motions, a family of simulation methods for nonstationary seismic ground motions was developed previously through employing a wave-group propagation formulation with phase spectrum model built up on the frequency components’ starting-time of phase evolution. The present paper aims at extending the formulation to the simulation of non-stationary random seismic ground motions. The ground motion records associated with N–S component of Northridge Earthquake at the type-II site are investigated. The frequency components’ starting-time of phase evolution of is identified from the ground motion records, and is proved to admit the Gamma distribution through data fitting. Numerical results indicate that the simulated random ground motion features zeromean, non-stationary, and non-Gaussian behaviors, and the phase spectrum model with only a few starting-times of phase evolution could come up with a sound contribution to the simulation.
基金supported by the National Natural Science Foundation of China (Nos.41371245 and 41230855)the National Key Technology R&D Program of China (No.2012BAJ24B06)
文摘In this study, biochars from rice straw (Oryza sativa L.) were prepared at 200-600 ℃ by oxygen-limited pyrolysis to investigate the changes in properties of rice straw biochars produced at different temperatures, and to examine the adsorption capacities of the biochars for a heavy metal, copper(II) (Cu(II)), and an organic insecticide of cyromazine, as well as to further reveal the adsorption mechanisms. The results obtained with batch experiments showed that the amount of Cu(II) adsorbed varied with the pyrolysis temperatures of rice straw biochar. The biochar produced at 400 ~C had the largest adsorption capacity for Cu(II) (0.37 mol kg-1) among the biochars, with the non-electrostatic adsorption as the main adsorption mechanism. The highest adsorption capacity for cyromazine (156.42 g kg-1) was found in the rice straw biochar produced at 600 ℃, and cyromazine adsorption was exclusively predominated by surface adsorption. An obvious competitive adsorption was found between 5 mmol L-1 Cu(II) and 2 g L-1 cyromazine when they were in the binary solute system. Biochar may be used to remediate heavy metal- and organic insecticide-contaminated water, while the pyrolysis temperature of feedstocks for producing biochar should be considered for the restoration of multi-contamination.
基金supported by the Natural Science Founddation of China (Nos.41272017,41322021)
文摘Global occurrences of Steptoean Positive Carbon Isotope Excursion(SPICE) during Late Cambrian recorded a significant perturbation in marine carbon cycle, and might have had profound impacts on the biological evolution. In previous studies, SPICE has been reported from the Jiangnan slope belt in South China. To evaluate the bathymetric extent of SPICE, we investigate the limestone samples from the upper Qingxi Formation in the Shaijiang Section in the Jiangnan Basin. Our results show the positive excursions for both carbonate carbon(δ^(13)C) and organic carbon(δ^(13)C_(org)) isotopes, as well as the concurrent positive shifts in sulfur isotopes of carbonate associated sulfate(CAS, δ^(34)S_(CAS)) and pyrite(δ^(34)S_(pyrite)), unequivocally indicating the presence of SPICE in the Jiangnan Basin. A 4‰ increase in δ^(13)C_(carb) of the Qingxi limestone implies the increase of the relative flux of organic carbon burial by a factor of two. Concurrent positive excursions in δ^(34)S_(CAS) and δ^(34)S_(pyrite) have been attributed to the enhanced pyrite burial in oceans with extremely low concentration and spatially heterogeneous isotopic composition of seawater sulfate. Here, we propose that the seawater sulfur isotopic heterogeneity can be generated by volatile organic sulfur compound(VOSC, such as methanethiol and dimethyl sulfide) formation in sulfidic continental margins that were widespread during SPICE. Emission of 32S-enriched VOSC in atmosphere, followed by lateral transportation and aerobic oxidation in atmosphere, and precipitation in open oceans result in a net flux of ^(32)S from continental margins to open oceans, elevating δ^(34)S of seawater sulfate in continental margins. A simple box model indicates that about 35% to 75% of seawater sulfate in continental margins needs to be transported to open oceans via VOSC formation.
基金supported by the Natural Science Foundation of China (Nos. 41272017, 41322021)Chinese Geological Survey Program (No. 1212011120622)
文摘Phosphorite nodule beds are discovered in the black shale of basal Niutitang Formation throughout the Yangtze Platform in South China, recording an important phosphorite-generation event. Platform-wide phosphorite precipitation requires special oceanographic and geochemical conditions, thus the origin of the Niutitang phosphorite nodules may provide valuable information about the ocean chemistry in the Early Cambrian. In this study, we measured sulfur and oxygen isotopic compositions of sulfate extracted from phosphorite nodules collected from the basal Niutitang Formation. Phosphorite associated sulfate(PAS) is a trace amount of sulfate that incorporates into crystal lattice during phosphorite precipitation, accordingly PAS records the geochemical signals during phosphorite nodule formation. Sulfur isotopic composition of PAS(δ^(34)S_(PAS)) ranges from-1.16‰ to +24.48‰(mean=+8.19‰, n=11), and oxygen isotopic value(δ^(18)O_(PAS)) varies between-5.3‰ and +26.3‰(mean=+7.0‰, n=8). Most phosphorite nodules have low δ^(34)SPAS and low δ^(18)O_(PAS) values, suggesting PAS mainly derived from anaerobic oxidation of H_2S within suboxic sediment porewater. We propose that phosphate was delivered to the Yangtze Platform by a series of upwelling events, and was scavenged from seawater with the precipitation of FeOOH. The absorbed phosphate was released into suboxic porewater by the reduction of FeOOH at the oxic-suboxic redox boundary in sediments, and phosphorite nodule precipitated by the reaction of phosphate with Ca^(2+) diffused from the overlying seawater. The platform-wide deposition of phosphorite nodules in the basal Niutitang Formation implies the bottom water might be suboxic or even oxic, at least sporadically, in Early Cambrian. We speculate that the intensified ocean circulation as evident with frequent occurrences of upwelling events might be the primary reason for the episodic oxidation of the Yangtze Platform in Early Cambrian.
基金supported by the National Key R&D Project of China(2018YFA0902300)NSFC grants(81602499,21827811,91753109)Hu-Xiang Young Talent Program from Hunan Province(2019RS2022).
文摘Dear Editor,Artemisinin and its derivatives(AIDs)have recently been widely applied in cancer therapy as promising therapeutic agents owing to its hypotoxicity and special bioactivation pathways.Though numerous strategies have been established to improve the potency of AIDs,they are still relatively inefficacious against cancers,especially as a monotherapy.^(1)It is thus essential to develop novel approaches to considerably enhance their anticancer efficacy.We hypothesized that aptamers with specific recognition,high-affinity binding,and receptor-mediated internalization would promote the accumulation of AIDs inside the target cells and lead to death of the target cancer cells.^(2)
基金supported by the National Natural Science Foundation of China(Nos.41872032,41830215,41930320)the Chinese‘111’project(No.B20011)the support from the China Scholarship Council for one-year of studying abroad。
文摘The nitrogen isotope compositions(δ^(15)N )of sedimentary rocks can provide information about the nutrient N cycling and redox conditions that may have played important roles in biological evolution in Earth’s history.Although considerableδ^(15)N data for the Precambrian have been published,there is a large gap during the Early Neoproterozoic that restrains our understanding of the linkages among N cycling,ocean redox changes and biological evolution during this key period.Here,we report bulkδ^(15)N and organic carbon isotope(^(δ)13C_(org))compositions as well as the total nitrogen(TN)and total organic carbon(TOC)contents from the Tonian fossiliferous Liulaobei Formation in the southern part of the North China Platform.Theδ^(15)N in the study section is dominated by very stable values centering around+4.3‰,which is moderately lower than that in modern sediments(~+6‰).These positiveδ^(15)N values were attributed to partial denitrification under low primary productivity(scenario 1)and/or denitrification coupled with dissimilatory nitrate reduction to ammonium(DNRA)(scenario 2).In either case,the availability of fixed nitrogen may have provided the nutrient N required to facilitate facilitated eukaryotic growth.Our study highlights the pivotal role of nutrient N in the evolution of eukaryotes.