As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting t...As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting the mechanical strains and alleviating phase degradation upon cycling.Hereinafter,we propose a strategy using a zeolitic imidazolate framework(ZIF)as the self-sacrificing template to directionally prepare a series of LiNi_(0.1)Co_(0.9)O_(2)(LNCO)with tailorable electrochemical properties.The rational selection of sintering temperature imparts the superiority of the resultant products in lithium storage,during which the sample prepared at 700℃(LNCO-700)outperforms its counterparts in cyclability(156.8 mA h g^(-1)at 1 C for 200 cycles in half cells,1 C=275 mA g^(-1))and rate capability due to the expedited ion/electron transport and the strengthen mechanical robustness.The feasibility of proper Ni doping is also divulged by half/full cell tests and theoretical study,during which LNCO-700(167 mA h g^(-1)at 1 C for 100 cycles in full cells)surpasses LCO-700 in battery performance due to the mitigated phase deterioration,stabilized layered structu re,ameliorated electro nic co nductivity,a nd exalted lithium sto rage activity.This work systematically unveils tailorable electrochemical behaviors of LNCO to better direct their practical application.展开更多
Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon s...Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials.展开更多
We demonstrate the feasibility of simultancous multi-probe detection for an optcal-resolution photoacoustic microscopy(OR-PAM)system.OR-P AM has elicited the attention of biomedical imaging researchers because of its ...We demonstrate the feasibility of simultancous multi-probe detection for an optcal-resolution photoacoustic microscopy(OR-PAM)system.OR-P AM has elicited the attention of biomedical imaging researchers because of its optical absorption contrast and high spatial resolution with great imaging depth.OR-PAM allows label-free and noninvasive imaging by maximizing the optical absorption of endogenous biomolecules.However,given the inadequate absoption of some biomolcules,detection sensitivity at the same incident intensity requires improvement.In this study,a modulated continuous wave with power density less than 3mW/cm^(2)(1/4 of the ANSI safety limit)excited the weak photoacoustic(PA)signals of biological cells.A microcavity traneducer is developed based on the bulk modulus of gas five orders of magnitude lower than that of solid;air pressure variation is inversely proportional to cavity volume at the same temperature increase.Considering that a PA wave expands in various directions,detecting PA signals from different positions and adding them together can increase detection sensitivity and signal-to-noise ratio.Therefore,we employ four detectors to acquire tiny PA signals simul-taneously.Experimental results show that the developed OR-PAM system allows the label-free imaging of cells with weak optical absorption.展开更多
Despite the dazzling theoretical capacity,the devasting electrochemical activity of Li_(2)MnO_(3)(LMO)caused by the difficult oxidation of Mn4+impedes its practical application as the lithium-ion battery(LIB)cathode.T...Despite the dazzling theoretical capacity,the devasting electrochemical activity of Li_(2)MnO_(3)(LMO)caused by the difficult oxidation of Mn4+impedes its practical application as the lithium-ion battery(LIB)cathode.The efficacious activation of the Li_(2)MnO_(3) by importing electrochemically active Mn3+ions or morphological engineering is instrumental to its lithium storage activity and structural integrity upon cycling.Herein,we propose a conceptual strategy with metal-organic frameworks(MOFs)as self-sacrificial templates to prepare oxygen-deficient Li_(2)MnO_(3)(O_v-LMO)for exalted lithium storage performance.Attributed to optimized morphological features,LMO materials derived from Mn-BDC(H_(2)BDC=1,4-dicarboxybenzene)delivered superior cycling/rate performances compared with their counterparts derived from Mn-BTC(H_(3)BTC=1,3,5-benzenetricarboxylicacid)and Mn-PTC(H_(4)PTC=pyromellitic acid).Both experimental and theoretical studies elucidate the efficacious activation of primitive LMO materials toward advanced lithium storage by importing oxygen deficiencies.Impressively,O_v-LMO derived from Mn-BDC(O_v-BDC-LMO)delivered intriguing reversible capacities(179.2 mA h g^(-1)at 20 mA g^(-1)after 200 cycles and 100.1 mA h g^(-1)at 80 mA g^(-1)after 300 cycles),which can be attributed to the small particle size that shortens pathways for Li+/electron transport,the enhanced redox activity induced by abundant oxygen vacancies,and the optimized electronic configuration that contributes to the faster lithium diffusivity.This work provides insights into the rational design of LMO by morphological and atomic modulation to direct its activation and practical application as an advanced LIB cathode.展开更多
Soluble microneedles(MNs)have recently become an eficient and minimally invasive tool in transdermal drug delivery because of their excellent biocompatibility and rapid dissohution.However,direct monitoring of structu...Soluble microneedles(MNs)have recently become an eficient and minimally invasive tool in transdermal drug delivery because of their excellent biocompatibility and rapid dissohution.However,direct monitoring of structural and functional changes of MNs in vivo to estimate the efficieancy of insulin delivery is difficult.We monitored the dissolution of MNs to obtain structural imaging of MNs'changes by using optical coherence tomography(OCT).We also observed the effect of MNs on microvascular conditions with laser speckle contrast imaging(LSCIT)and measured the blood perfusion of skin to obtain functional imaging of MNs.We determined the performance of two soluble MN arrays made from polyvinyi alcohol(PVA)and polyvinyl alco-hol/polyvinylpyrolidone(PVA/PVP)by calculating the cross sectional areas of the micro-channels in mouse skin as a function of time.Moreover,the change in blood glucose before and after using MNs loaded with insulin was evaluated as an auxiliary means to demonstrate the ability of the soluble MNs to deliver insulin.Results showed that the structural imaging of these MNs could be observed in vivo via OCT in real time and the fumctional imaging of MNs could be showed using LSCI OCT and LSCI are potential tools in monitoring MNs structural and functional changes.展开更多
To date,Co-based metal-organic frameworks(Co-MOFs)have drawn much attention owing to their advantages of easy preparation,high porosity and adjustable structure.Because of these enticing properties,numerous efforts ha...To date,Co-based metal-organic frameworks(Co-MOFs)have drawn much attention owing to their advantages of easy preparation,high porosity and adjustable structure.Because of these enticing properties,numerous efforts have been devoted to their applications in energy storage and conversion.However,poor conductivity has become one of the biggest obstacles for large-scale use of pristine Co-MOFs.Subsequently,many attempts have been carried out to develop various Co-MOF derived materials as electrodes for rechargeable batteries in order to address the above-mentioned shortcoming and to enhance the electrical conductivity with improved stability during cycling.Moreover,in addition to improvement of Li-ion batteries in practical utilization,seeking for other rechargeable batteries is another urgent task due to the high cost and limited sources of metallic Li.Herein,by following the recent research progress,this review provides an overview of applications of Co-MOF derived materials in various rechargeable batteries including lithium-ion batteries,sodium-ion batteries,lithium-sulfur batteries,zinc air batteries and other rechargeable batteries,where they have been utilized as cathodes,anodes,separators and electrocatalysts.Accordingly,we categorize and compare the morphology driven electrochemical performance of various Co-MOF derivatives including porous carbon,cobalt oxides,cobalt chalcogenides,cobalt phosphides and corresponding composites.Finally,current challenges for large-scale production and commercialization of Co-MOF derived materials as well as some reasonable solutions have been discussed at the end.展开更多
Three-dimensional green volume(TDGV)reflects the quality and quantity of urban green space and its provision of ecosystem services;therefore,its spatial pattern and the underlying influential factors play important ro...Three-dimensional green volume(TDGV)reflects the quality and quantity of urban green space and its provision of ecosystem services;therefore,its spatial pattern and the underlying influential factors play important roles in urban planning and management.However,little is known about the factors contributing to the spatial pattern of TDGV.In this paper,TDGV and land use intensity(LUI)extracted from high spatial resolution(0.05 m)remotely sensed data acquired by an unmanned aerial vehicle(UAV),anthropogenic factors^(1))and natural factors^(2))were utilized to identify the spatial pattern of TDGV and the potential influencing factors in Lingang New City,a rapidly developed coastal town in Shanghai.The results showed that most of the TDGV was distributed in the western part of this new city and that its spatial variations were significantly axial.TDGV corresponded well with the chronologies of land formation,urban planning,and construction in the city.Generalized least squares(GLS)analysis of TDGV(grid cell size:100×100 m)and its influencing factors showed that the TDGV in this new city was significantly negatively correlated with both LUI and distance from roads and significantly positively correlated with land formation time and distance from water.Distance from buildings did not affect TDGV.Additionally,the degree of influence decreased in the following order:distance from water>land formation time>distance from roads>LUI.These results indicate that the spatial pattern of TDGV in this new town was mainly affected by natural factors(i.e.,the distance from water and land formation time)and that the artificial disturbances caused by rapid urbanization did not decrease the regional TDGV.The main factors shaping the spatial distribution of TDGV in this city were local natural factors.Our findings suggest that the improvement in local soil and water conditions should be emphasized in the construction of new cities in coastal areas to ensure the efficient provision of ecological services by urban green spaces.展开更多
As the demand for high-performance bearings gradually increases, ceramic balls with excellent proper- ties, such as high accuracy, high reliability, and high chemical durability used, are extensively used for high- pe...As the demand for high-performance bearings gradually increases, ceramic balls with excellent proper- ties, such as high accuracy, high reliability, and high chemical durability used, are extensively used for high- performance bearings. In this study, a spiral V-groove plate method is employed in processing high-precision ceramic balls. After the kinematic analysis of the ball-spin angle and enveloped lapping trajectories, an experimental rig is constructed and experiments are conducted to confirm the feasibility of this method. Kinematic analysis results indicate that the method not only allows for the control of the ball-spin angle but also uniformly distributes the enveloped lapping trajectories over the entire ball surface. Experimental results demonstrate that the novel spiral V- groove plate method performs better than the conventional concentric V-groove plate method in terms of roundness, surface roughness, diameter difference, and diameter decrease rate. Ceramic balls with a G3-1evel accuracy are achieved, and their typical roundness, minimum surface roughness, and diameter difference are 0.05, 0.0045, and 0.105 μm, respectively. These findings confirm that the proposed method can be applied to high-accuracy and high-consistency ceramic ball processing.展开更多
The role of computed tomography(CT)images in forensic identification has been widely recognized.Such images can provide an important basis for identification of the cause of death in complicated and difficult cases,in...The role of computed tomography(CT)images in forensic identification has been widely recognized.Such images can provide an important basis for identification of the cause of death in complicated and difficult cases,including falls from a height,drowning,explosion and gunshot cases,traffic accidents,and sudden death.However,few reports have focused on the application of CT images in cases of death caused by sharp object injuries.Therefore,the CT images and autopsy findings were compared in a case of death caused by sharp object injuries to the chest and abdomen,and the importance of CT images in cases of death from common sharp object injuries is herein discussed.展开更多
基金the financial support from the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2023b0145)Guangdong Provincial International Joint Research Center for Energy Storage Materials(2023A0505090009)。
文摘As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting the mechanical strains and alleviating phase degradation upon cycling.Hereinafter,we propose a strategy using a zeolitic imidazolate framework(ZIF)as the self-sacrificing template to directionally prepare a series of LiNi_(0.1)Co_(0.9)O_(2)(LNCO)with tailorable electrochemical properties.The rational selection of sintering temperature imparts the superiority of the resultant products in lithium storage,during which the sample prepared at 700℃(LNCO-700)outperforms its counterparts in cyclability(156.8 mA h g^(-1)at 1 C for 200 cycles in half cells,1 C=275 mA g^(-1))and rate capability due to the expedited ion/electron transport and the strengthen mechanical robustness.The feasibility of proper Ni doping is also divulged by half/full cell tests and theoretical study,during which LNCO-700(167 mA h g^(-1)at 1 C for 100 cycles in full cells)surpasses LCO-700 in battery performance due to the mitigated phase deterioration,stabilized layered structu re,ameliorated electro nic co nductivity,a nd exalted lithium sto rage activity.This work systematically unveils tailorable electrochemical behaviors of LNCO to better direct their practical application.
基金Research and Development Plan Project in Key Fields of Guangdong Province (2020B0101030005)Basic and Applied Basic Research Fund of Guangdong Province (2019B1515120027)+1 种基金Scientific Research Innovation Project of Graduate School of South China Normal University (2024KYLX050)Special Funds for the Cultivation of Guangdong College Students’ Scientific and Technological Innovation (“Climbing Program” Special Funds, pdjh2024a109)。
文摘Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials.
基金supported by the National Natural Science Foundation of China(Grant No.61178086)Science and Technology Program of Guangzhou,China(Grant No.2012J4300138)Foundation for Distinguished Young Talents in South China Normal University,China.(Grant No.2012KJ010).
文摘We demonstrate the feasibility of simultancous multi-probe detection for an optcal-resolution photoacoustic microscopy(OR-PAM)system.OR-P AM has elicited the attention of biomedical imaging researchers because of its optical absorption contrast and high spatial resolution with great imaging depth.OR-PAM allows label-free and noninvasive imaging by maximizing the optical absorption of endogenous biomolecules.However,given the inadequate absoption of some biomolcules,detection sensitivity at the same incident intensity requires improvement.In this study,a modulated continuous wave with power density less than 3mW/cm^(2)(1/4 of the ANSI safety limit)excited the weak photoacoustic(PA)signals of biological cells.A microcavity traneducer is developed based on the bulk modulus of gas five orders of magnitude lower than that of solid;air pressure variation is inversely proportional to cavity volume at the same temperature increase.Considering that a PA wave expands in various directions,detecting PA signals from different positions and adding them together can increase detection sensitivity and signal-to-noise ratio.Therefore,we employ four detectors to acquire tiny PA signals simul-taneously.Experimental results show that the developed OR-PAM system allows the label-free imaging of cells with weak optical absorption.
基金the financial support from the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2023b0145)the Research and Development Plan Project in Key Fields of Guangdong Province(2020B0101030005)+1 种基金the Applied special project of Guangdong Provincial Science and Technology Plan(2017B090917002)the Basic and Applied Basic Research Fund of Guangdong Province(2019B1515120027)。
文摘Despite the dazzling theoretical capacity,the devasting electrochemical activity of Li_(2)MnO_(3)(LMO)caused by the difficult oxidation of Mn4+impedes its practical application as the lithium-ion battery(LIB)cathode.The efficacious activation of the Li_(2)MnO_(3) by importing electrochemically active Mn3+ions or morphological engineering is instrumental to its lithium storage activity and structural integrity upon cycling.Herein,we propose a conceptual strategy with metal-organic frameworks(MOFs)as self-sacrificial templates to prepare oxygen-deficient Li_(2)MnO_(3)(O_v-LMO)for exalted lithium storage performance.Attributed to optimized morphological features,LMO materials derived from Mn-BDC(H_(2)BDC=1,4-dicarboxybenzene)delivered superior cycling/rate performances compared with their counterparts derived from Mn-BTC(H_(3)BTC=1,3,5-benzenetricarboxylicacid)and Mn-PTC(H_(4)PTC=pyromellitic acid).Both experimental and theoretical studies elucidate the efficacious activation of primitive LMO materials toward advanced lithium storage by importing oxygen deficiencies.Impressively,O_v-LMO derived from Mn-BDC(O_v-BDC-LMO)delivered intriguing reversible capacities(179.2 mA h g^(-1)at 20 mA g^(-1)after 200 cycles and 100.1 mA h g^(-1)at 80 mA g^(-1)after 300 cycles),which can be attributed to the small particle size that shortens pathways for Li+/electron transport,the enhanced redox activity induced by abundant oxygen vacancies,and the optimized electronic configuration that contributes to the faster lithium diffusivity.This work provides insights into the rational design of LMO by morphological and atomic modulation to direct its activation and practical application as an advanced LIB cathode.
基金the National Natural Science Foundation of China(Nos.81571837,81601534 and 61575067).
文摘Soluble microneedles(MNs)have recently become an eficient and minimally invasive tool in transdermal drug delivery because of their excellent biocompatibility and rapid dissohution.However,direct monitoring of structural and functional changes of MNs in vivo to estimate the efficieancy of insulin delivery is difficult.We monitored the dissolution of MNs to obtain structural imaging of MNs'changes by using optical coherence tomography(OCT).We also observed the effect of MNs on microvascular conditions with laser speckle contrast imaging(LSCIT)and measured the blood perfusion of skin to obtain functional imaging of MNs.We determined the performance of two soluble MN arrays made from polyvinyi alcohol(PVA)and polyvinyl alco-hol/polyvinylpyrolidone(PVA/PVP)by calculating the cross sectional areas of the micro-channels in mouse skin as a function of time.Moreover,the change in blood glucose before and after using MNs loaded with insulin was evaluated as an auxiliary means to demonstrate the ability of the soluble MNs to deliver insulin.Results showed that the structural imaging of these MNs could be observed in vivo via OCT in real time and the fumctional imaging of MNs could be showed using LSCI OCT and LSCI are potential tools in monitoring MNs structural and functional changes.
基金financially supported by the Guangzhou Science and Technology Project,China(No.201904010213)the Foundation of Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application(Nos.LFCCMCA-01 and LFCCMCA-06)+1 种基金the Scientific Research Launch Project of Anhui Polytechnic University(No.2020YQQ057)the Scientific Research Project of Anhui Polytechnic University(No.Xjky2020090)。
文摘To date,Co-based metal-organic frameworks(Co-MOFs)have drawn much attention owing to their advantages of easy preparation,high porosity and adjustable structure.Because of these enticing properties,numerous efforts have been devoted to their applications in energy storage and conversion.However,poor conductivity has become one of the biggest obstacles for large-scale use of pristine Co-MOFs.Subsequently,many attempts have been carried out to develop various Co-MOF derived materials as electrodes for rechargeable batteries in order to address the above-mentioned shortcoming and to enhance the electrical conductivity with improved stability during cycling.Moreover,in addition to improvement of Li-ion batteries in practical utilization,seeking for other rechargeable batteries is another urgent task due to the high cost and limited sources of metallic Li.Herein,by following the recent research progress,this review provides an overview of applications of Co-MOF derived materials in various rechargeable batteries including lithium-ion batteries,sodium-ion batteries,lithium-sulfur batteries,zinc air batteries and other rechargeable batteries,where they have been utilized as cathodes,anodes,separators and electrocatalysts.Accordingly,we categorize and compare the morphology driven electrochemical performance of various Co-MOF derivatives including porous carbon,cobalt oxides,cobalt chalcogenides,cobalt phosphides and corresponding composites.Finally,current challenges for large-scale production and commercialization of Co-MOF derived materials as well as some reasonable solutions have been discussed at the end.
基金supported by the National Key R&D Program of China(No.2016YFC0502704)Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration(No.SHUES2018B07).
文摘Three-dimensional green volume(TDGV)reflects the quality and quantity of urban green space and its provision of ecosystem services;therefore,its spatial pattern and the underlying influential factors play important roles in urban planning and management.However,little is known about the factors contributing to the spatial pattern of TDGV.In this paper,TDGV and land use intensity(LUI)extracted from high spatial resolution(0.05 m)remotely sensed data acquired by an unmanned aerial vehicle(UAV),anthropogenic factors^(1))and natural factors^(2))were utilized to identify the spatial pattern of TDGV and the potential influencing factors in Lingang New City,a rapidly developed coastal town in Shanghai.The results showed that most of the TDGV was distributed in the western part of this new city and that its spatial variations were significantly axial.TDGV corresponded well with the chronologies of land formation,urban planning,and construction in the city.Generalized least squares(GLS)analysis of TDGV(grid cell size:100×100 m)and its influencing factors showed that the TDGV in this new city was significantly negatively correlated with both LUI and distance from roads and significantly positively correlated with land formation time and distance from water.Distance from buildings did not affect TDGV.Additionally,the degree of influence decreased in the following order:distance from water>land formation time>distance from roads>LUI.These results indicate that the spatial pattern of TDGV in this new town was mainly affected by natural factors(i.e.,the distance from water and land formation time)and that the artificial disturbances caused by rapid urbanization did not decrease the regional TDGV.The main factors shaping the spatial distribution of TDGV in this city were local natural factors.Our findings suggest that the improvement in local soil and water conditions should be emphasized in the construction of new cities in coastal areas to ensure the efficient provision of ecological services by urban green spaces.
基金Acknowledgements The authors wish to thank the National Natural Science Foundation of China for partially supporting this project (Grant No. 51375455),
文摘As the demand for high-performance bearings gradually increases, ceramic balls with excellent proper- ties, such as high accuracy, high reliability, and high chemical durability used, are extensively used for high- performance bearings. In this study, a spiral V-groove plate method is employed in processing high-precision ceramic balls. After the kinematic analysis of the ball-spin angle and enveloped lapping trajectories, an experimental rig is constructed and experiments are conducted to confirm the feasibility of this method. Kinematic analysis results indicate that the method not only allows for the control of the ball-spin angle but also uniformly distributes the enveloped lapping trajectories over the entire ball surface. Experimental results demonstrate that the novel spiral V- groove plate method performs better than the conventional concentric V-groove plate method in terms of roundness, surface roughness, diameter difference, and diameter decrease rate. Ceramic balls with a G3-1evel accuracy are achieved, and their typical roundness, minimum surface roughness, and diameter difference are 0.05, 0.0045, and 0.105 μm, respectively. These findings confirm that the proposed method can be applied to high-accuracy and high-consistency ceramic ball processing.
基金This work was supported by the Research Topic "Research on the Injury Mechanism of Complex Craniocerebral Injuries and the Comprehensive Diagnosis Methods of Forensic Medicine"(2018YFC0807203)under Project"Research on the Basic Theory of Forensic Medicine and Trace Inspection Science" of 2018 National Key R&D Program of China and was a Funded Project of Fundamental Research Funds for the Central Scientific Research Institutes(2016JB041).
文摘The role of computed tomography(CT)images in forensic identification has been widely recognized.Such images can provide an important basis for identification of the cause of death in complicated and difficult cases,including falls from a height,drowning,explosion and gunshot cases,traffic accidents,and sudden death.However,few reports have focused on the application of CT images in cases of death caused by sharp object injuries.Therefore,the CT images and autopsy findings were compared in a case of death caused by sharp object injuries to the chest and abdomen,and the importance of CT images in cases of death from common sharp object injuries is herein discussed.