Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ...Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.展开更多
BiVO_(4)is one of the most promising photoanode materials for photoelectrochemical(PEC)solar energy conversion,but it still suffers from poor photocurrent density due to insufficient light‐harvesting efficiency(LHE),...BiVO_(4)is one of the most promising photoanode materials for photoelectrochemical(PEC)solar energy conversion,but it still suffers from poor photocurrent density due to insufficient light‐harvesting efficiency(LHE),weak photogenerated charge separation efficiency(Φ_(Sep)),and low water oxidation efficiency(Φ_(OX)).Herein,we tackle these challenges of the BiVO_(4)photoanodes using systematic engineering,including catalysis engineering,bandgap engineering,and morphology engineering.In particular,we deposit a NiCoO_(x)layer onto the BiVO_(4)photoanode as the oxygen evolution catalyst to enhance theΦ_(OX)of Fe‐g‐C_(3)N_(4)/BiVO_(4)for PEC water oxidation,and incorporate Fe‐doped graphite‐phase C_(3)N_(4)(Fe‐g‐C_(3)N_(4))into the BiVO_(4)photoanode to optimize the bandgap and surface areas to subsequently expand the light absorption range of the photoanode from 530 to 690 nm,increase the LHE andΦ_(Sep),and further improve the oxygen evolution reaction activity of the NiCoO_(x)catalytic layer.Consequently,the maximum photocurrent density of the as‐prepared NiCoO_(x)/Fe‐g‐C_(3)N_(4)/BiVO_(4)is remarkably boosted from 4.6 to 7.4 mA cm^(−2).This work suggests that the proposed systematic engineering strategy is exceptionally promising for improving LHE,Φ_(Sep),andΦ_(OX)of BiVO_(4)‐based photoanodes,which will substantially benefit the design,preparation,and large‐scale application of next‐generation high‐performance photoanodes.展开更多
Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.Howe...Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.However,during the intercalation of Li ions into the matrix of CFC(below 0.5 V vs.Li/Li+),the incompatibility in the capacity of the CFC,when used directly as an anode material or as a current collector for active materials,leads to difficulty in the estimation of its actual contribution.To address this issue,we prepared Ni_(5)P_(4)nanosheets on CFC(denoted CFC@Ni_(5)P_(4))and investigated the contribution of CFC in the CFC@Ni_(5)P_(4)by comparing to the powder Ni_(5)P_(4)nanosheets traditionally coated on a copper foil(CuF)(denoted P-Ni_(5)P_(4)).At a current density of 0.4 mA cm^(−2),the as-prepared CFC@Ni_(5)P_(4)showed an areal capacity of 7.38 mAh cm^(−2),which is significantly higher than that of the PNi_(5)P_(4)electrode.More importantly,theoretical studies revealed that the CFC has a high Li adsorption energy that contributes to the low Li-ion diffusion energy barrier of the Ni_(5)P_(4)due to the strong interaction between the CFC and Ni_(5)P_(4),leading to the superior Li-ion storage performance of the CFC@Ni_(5)P_(4)over the pristine Ni_(5)P_(4)sample.This present work unveils the underlying mechanism leading to the achievement of high performance in SSEMs.展开更多
Nickel molybdate(NiMoO_(4))attracts superior hydrogen desorption behavior but noticeably poor for efficiently driving the hydrogen evolution reaction(HER)in alkaline media due to the sluggish water dissociation step.H...Nickel molybdate(NiMoO_(4))attracts superior hydrogen desorption behavior but noticeably poor for efficiently driving the hydrogen evolution reaction(HER)in alkaline media due to the sluggish water dissociation step.Herein,we successfully accelerate the water dissociation kinetics of NiMoO_(4)for prominent HER catalytic properties via simultaneous in situ interfacial engineering with molybdenum dioxide(MoO_(2))and doping with phosphorus(P).The as-synthesized P-doped NiMoO_(4)/MoO_(2)heterostructure nanorods exhibit outstanding HER performance with an extraordinary low overpotential of-23 m V at a current density of 10 m A cm^(-2),which is highly comparable to the performance of the state-of-art Pt/C coated on nickel foam(NF)catalyst.The density functional theory(DFT)analysis reveals the enhanced performance is attributed to the formation of MoO_(2)during the in situ epitaxial growth that substantially reduces the energy barrier of the Volmer pathway,and the introduction of P that provides efficient hydrogen desorption of Ni MoO_(2).This present work creates valuable insight into the utilization of interfacial and doping systems for hydrogen evolution catalysis and beyond.展开更多
A practical and effective approach to increase the energy storage capacity of lithium ion batteries(LIBs)is to boost their areal capacity.Developing thick electrodes is one of the most crucial ways to achieve high are...A practical and effective approach to increase the energy storage capacity of lithium ion batteries(LIBs)is to boost their areal capacity.Developing thick electrodes is one of the most crucial ways to achieve high areal capacity but limited by sluggish ion/electron transport,poor mechanical stability,and high-cost manufacturing strategies.Here we address these constraints by engineering a unique hierarchical-networked 10 mm thick all-carbon electrode,providing a scalable strategy to produce high areal capacity LIB electrodes.The hierarchical-networked structure utilizes micrometer-sized carbon fibers(MCFs)as building blocks,nano-sized carbon nanotubes(CNTs)as good continuous network with excellent electrical conductivity,and pyrolytic carbon as the binder and active material with excellent storage capacity.The combination of the above features endows our HNT-MCF/CNT/PC electrode with excellent performance including high reversible capacity of 15.44 mAh cm^(-2) at 2.0 mA cm^(-2) and exhibits excellent rate capability of 2.50 mAh cm^(-2) under 10.0 mA cm^(-2) current density.The Li-ion storage mechanism in HNT-MCF/CNT/PC involves dual-storage mechanism including intercalation and surface adsorption(pseudocapacitance)confirmed by the cyclic voltammetry and symmetric cell analysis.This work provides insights into the construction of high mechanical stability thick electrode for the next generation high areal capacity LIBs and beyond.展开更多
Cost-effective catalysts for the oxidation of volatile organic compounds (VOCs) are critical to energy conversion applications and environmental protection. The main bottleneck of this process is the development of ...Cost-effective catalysts for the oxidation of volatile organic compounds (VOCs) are critical to energy conversion applications and environmental protection. The main bottleneck of this process is the development of an efficient, stable, and cost-effective catalyst that can oxidize HCHO at low temperature. Here, an advanced material consisting of manganese cobalt oxide nanosheet arrays uniformly covered on a carbon textile is successfully fabricated by a simple anodic electrodeposition method combined with post annealing treatment, and can be directly applied as a high-performance catalytic material for HCHO elimination. Benefiting from the increased surface oxygen species and improved redox properties, the as-prepared manganese cobalt oxide nanosheets showed substantially higher catalytic activity for HCHO oxidation. The catalyst completely converted HCHO to CO2 at temperatures as low as 100 ℃, and exhibited excellent catalytic stability. Such impressive results are rarely achieved by non-precious metal-based catalysts at such low temperatures.展开更多
基金supported by the Science and Technology Innovation Program of Hunan Province(2022WZ1012)the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007)the Natural Science Foundation of Guangzhou(202201020147)。
文摘Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.
基金Natural Science Foundation of China,Grant/Award Number:22108042Guangzhou(202201020147)。
文摘BiVO_(4)is one of the most promising photoanode materials for photoelectrochemical(PEC)solar energy conversion,but it still suffers from poor photocurrent density due to insufficient light‐harvesting efficiency(LHE),weak photogenerated charge separation efficiency(Φ_(Sep)),and low water oxidation efficiency(Φ_(OX)).Herein,we tackle these challenges of the BiVO_(4)photoanodes using systematic engineering,including catalysis engineering,bandgap engineering,and morphology engineering.In particular,we deposit a NiCoO_(x)layer onto the BiVO_(4)photoanode as the oxygen evolution catalyst to enhance theΦ_(OX)of Fe‐g‐C_(3)N_(4)/BiVO_(4)for PEC water oxidation,and incorporate Fe‐doped graphite‐phase C_(3)N_(4)(Fe‐g‐C_(3)N_(4))into the BiVO_(4)photoanode to optimize the bandgap and surface areas to subsequently expand the light absorption range of the photoanode from 530 to 690 nm,increase the LHE andΦ_(Sep),and further improve the oxygen evolution reaction activity of the NiCoO_(x)catalytic layer.Consequently,the maximum photocurrent density of the as‐prepared NiCoO_(x)/Fe‐g‐C_(3)N_(4)/BiVO_(4)is remarkably boosted from 4.6 to 7.4 mA cm^(−2).This work suggests that the proposed systematic engineering strategy is exceptionally promising for improving LHE,Φ_(Sep),andΦ_(OX)of BiVO_(4)‐based photoanodes,which will substantially benefit the design,preparation,and large‐scale application of next‐generation high‐performance photoanodes.
基金National Natural Science Foundation of China,Grant/Award Numbers:21875292,21902188National Key Research and Development Program of China,Grant/Award Number:2019YFA0705702+2 种基金Hunan Provincial Natural Science Foundation,Grant/Award Number:2021JJ30087Natural Science Foundation of Guangdong Province,Grant/Award Number:2020A1515010798Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy,Grant/Award Number:2020CB1007。
文摘Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.However,during the intercalation of Li ions into the matrix of CFC(below 0.5 V vs.Li/Li+),the incompatibility in the capacity of the CFC,when used directly as an anode material or as a current collector for active materials,leads to difficulty in the estimation of its actual contribution.To address this issue,we prepared Ni_(5)P_(4)nanosheets on CFC(denoted CFC@Ni_(5)P_(4))and investigated the contribution of CFC in the CFC@Ni_(5)P_(4)by comparing to the powder Ni_(5)P_(4)nanosheets traditionally coated on a copper foil(CuF)(denoted P-Ni_(5)P_(4)).At a current density of 0.4 mA cm^(−2),the as-prepared CFC@Ni_(5)P_(4)showed an areal capacity of 7.38 mAh cm^(−2),which is significantly higher than that of the PNi_(5)P_(4)electrode.More importantly,theoretical studies revealed that the CFC has a high Li adsorption energy that contributes to the low Li-ion diffusion energy barrier of the Ni_(5)P_(4)due to the strong interaction between the CFC and Ni_(5)P_(4),leading to the superior Li-ion storage performance of the CFC@Ni_(5)P_(4)over the pristine Ni_(5)P_(4)sample.This present work unveils the underlying mechanism leading to the achievement of high performance in SSEMs.
基金supported by the National Natural Science Foundation of China(21875292 and 51902103)Hunan Provincial Natural Science Foundation(2019JJ50037 and 2021JJ30087)+1 种基金Natural Science Foundation of Guangdong Province(2020A1515010798)the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007)。
文摘Nickel molybdate(NiMoO_(4))attracts superior hydrogen desorption behavior but noticeably poor for efficiently driving the hydrogen evolution reaction(HER)in alkaline media due to the sluggish water dissociation step.Herein,we successfully accelerate the water dissociation kinetics of NiMoO_(4)for prominent HER catalytic properties via simultaneous in situ interfacial engineering with molybdenum dioxide(MoO_(2))and doping with phosphorus(P).The as-synthesized P-doped NiMoO_(4)/MoO_(2)heterostructure nanorods exhibit outstanding HER performance with an extraordinary low overpotential of-23 m V at a current density of 10 m A cm^(-2),which is highly comparable to the performance of the state-of-art Pt/C coated on nickel foam(NF)catalyst.The density functional theory(DFT)analysis reveals the enhanced performance is attributed to the formation of MoO_(2)during the in situ epitaxial growth that substantially reduces the energy barrier of the Volmer pathway,and the introduction of P that provides efficient hydrogen desorption of Ni MoO_(2).This present work creates valuable insight into the utilization of interfacial and doping systems for hydrogen evolution catalysis and beyond.
基金The National Natural Science Foundation of China(21875292)the Fundamental Research Funds for the Central Universities+1 种基金Guangxi Key Laboratory of Information Materials&Guilin University of Electronic Technology,China(191014K)the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007).
文摘A practical and effective approach to increase the energy storage capacity of lithium ion batteries(LIBs)is to boost their areal capacity.Developing thick electrodes is one of the most crucial ways to achieve high areal capacity but limited by sluggish ion/electron transport,poor mechanical stability,and high-cost manufacturing strategies.Here we address these constraints by engineering a unique hierarchical-networked 10 mm thick all-carbon electrode,providing a scalable strategy to produce high areal capacity LIB electrodes.The hierarchical-networked structure utilizes micrometer-sized carbon fibers(MCFs)as building blocks,nano-sized carbon nanotubes(CNTs)as good continuous network with excellent electrical conductivity,and pyrolytic carbon as the binder and active material with excellent storage capacity.The combination of the above features endows our HNT-MCF/CNT/PC electrode with excellent performance including high reversible capacity of 15.44 mAh cm^(-2) at 2.0 mA cm^(-2) and exhibits excellent rate capability of 2.50 mAh cm^(-2) under 10.0 mA cm^(-2) current density.The Li-ion storage mechanism in HNT-MCF/CNT/PC involves dual-storage mechanism including intercalation and surface adsorption(pseudocapacitance)confirmed by the cyclic voltammetry and symmetric cell analysis.This work provides insights into the construction of high mechanical stability thick electrode for the next generation high areal capacity LIBs and beyond.
基金This work was preliminarily supported by the National Natural Science Foundation of China (Nos. 21425627 and 21276104) and Natural Science Foundation of Guangdong Province (Nos. 21425627).
文摘Cost-effective catalysts for the oxidation of volatile organic compounds (VOCs) are critical to energy conversion applications and environmental protection. The main bottleneck of this process is the development of an efficient, stable, and cost-effective catalyst that can oxidize HCHO at low temperature. Here, an advanced material consisting of manganese cobalt oxide nanosheet arrays uniformly covered on a carbon textile is successfully fabricated by a simple anodic electrodeposition method combined with post annealing treatment, and can be directly applied as a high-performance catalytic material for HCHO elimination. Benefiting from the increased surface oxygen species and improved redox properties, the as-prepared manganese cobalt oxide nanosheets showed substantially higher catalytic activity for HCHO oxidation. The catalyst completely converted HCHO to CO2 at temperatures as low as 100 ℃, and exhibited excellent catalytic stability. Such impressive results are rarely achieved by non-precious metal-based catalysts at such low temperatures.