In persulfate-based advanced oxidation process(PS-AOPs),fixing nanosized metal oxide on processable substrates is highly desirable to avoid the aggregation and loss of nanocatalysts during the practical application.Ho...In persulfate-based advanced oxidation process(PS-AOPs),fixing nanosized metal oxide on processable substrates is highly desirable to avoid the aggregation and loss of nanocatalysts during the practical application.However,it is still challenging to develop a versatile strategy for the deposition of metal oxide nanocatalysts on various substrates with different physicochemical properties.Herein,polyphenols are utilized as a“molecular glue”and reductant to mediate the interfacial deposition of MnO_(2) nanocatalysts on different substrates.MnO_(2) nanocatalysts were in-situ grown on macroscope mineral substrates(e.g.,airstone)via an interfacial redox strategy between tannic acid(TA)and oxidized KMnO4,and then employed as a fixed catalyst of peroxymonosulfate(PMS)activation for treating pharmaceutical and personal care products(PPCPs)in water.The fixed MnO_(2) exhibited superior catalytic performance toward different PPCPS via a singlet oxygen(^(1)O_(2))-dominated nonradical oxidation pathway.PPCPs in the secondary effluent of wastewater treatment plants could be effectively removed by a fixed-bed column of the fixed MnO_(2) with long term stability.Redox cycle of Mn^(4+)/Mn^(3+)and surface hydroxyl group of the fixed MnO_(2) was proved to be responsible for the activation of PMS.This work provides a new avenue for developing fixed metal oxides for sustainable water treatment.展开更多
Benzene series as highly toxic gases have inevitably entered human life and produce great threat to human health and ecological environment,and thus it is distinctly meaningful to monitor benzene series with quickly,r...Benzene series as highly toxic gases have inevitably entered human life and produce great threat to human health and ecological environment,and thus it is distinctly meaningful to monitor benzene series with quickly,real-time and efficient technique.Herein,novel sulfur-doped mesoporous WO_(3)materials were synthesized via classical in-situ solvent evaporation induced co-assembly strategy combined with doping engineering,which possessed highly crystallized frameworks,high specific surface area(40.9–63.8 m^(2)/g)and uniform pore size(~18 nm).Benefitting from abundant oxygen vacancy and defects via S-doping,the tailored mesoporous S/m WO_(3)exhibited excellent benzene sensing performance,including high sensitivity(50 ppm vs.48),low detection limit(ca.500 ppb),outstanding selectivity and favorable stability.In addition,the reduction of band gap resulted from S-doping promotes the carrier migration in the sensing materials and the reaction at the gas–solid sensing interfaces.It provides brand-new approach to design sensitive materials with multiple reaction sites.展开更多
Hollow TiO2-x porous microspheres consisted of numerous well-crystalline nanocrystals with superior structural integrity and robust hollow interior were synthesized by a facile sol-gel template-assisted approach and t...Hollow TiO2-x porous microspheres consisted of numerous well-crystalline nanocrystals with superior structural integrity and robust hollow interior were synthesized by a facile sol-gel template-assisted approach and two-step carbonprotected calcination method, together with hydrogenation treatment. They exhibit a uniform diameter of -470 nm with a thin porous wall shell of -50 nm in thickness. The Brunauer-Emmett-Teller (BET) surface area and pore volume are -19 m2/g and 0.07 crnB/g, respectively. These hollow TiOR_x porous microspheres demonstrated excellent lithium storage performance with stable capacity retention for over 300 cycles (a high capacity of 151 mAh/g can be obtained up to 300 cycles at I C, retaining 81.6% of the initial capacity of 185 mAh/g) and enhanced rate capability even up to 10 C (222, 192, 121, and 92.1 mAh/g at current rates of 0.5, 1, 5, and 10 C, respectively). The intrinsic increased conductivity of the hydrogenated TiO2 microspheres and their robust hollow structure benefidal for lithium ion-electron diffusion and mitigating the structural strain synergistically contribute to the remarkable improvements in their cycling stability and rate performance.展开更多
Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, t...Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, the obtained functional magnetic microspheres as heterogeneous catalysts showed superior performance in catalyzing the epoxidation of styrene with extraordinary high conversion (89.5%) and selectivity (90.8%) towards styrene oxide. It is believed that the construction process of these fascinating materials features many implications for creating other functional nanocomposites.展开更多
Incorporation of heteroatoms into the framewo rk of zeolites has become a significant strategy to improve their performance in catalysis and adsorption,because the obtained heteroatom zeolites exhibit quite different ...Incorporation of heteroatoms into the framewo rk of zeolites has become a significant strategy to improve their performance in catalysis and adsorption,because the obtained heteroatom zeolites exhibit quite different properties from the conventional aluminosilicate zeolites in aspects of surface acidity,pore structures,particle size and so on.In this review,the progress on the heteroatom zeolites including their synthesis and application is highlighted.First,the recent advance on the design and synthesis of different heteroatom zeolites is summarized.Special emphasis is placed on the introduction and comparison of three typical methods,including the direct synthesis,post synthesis and improved direct synthesis,for the traditional heteroatom zeolites(such as TS-1,Sn-MFI,Sn-β) and newly-reported heteroatom zeolites(such as W-MFI,Mo-MFI).According to their intrinsic characteristics,the application of heteroatom zeolites in diverse fields,such as production of fine chemicals,air pollution control and biomass conversion is then discussed.Finally,the challenges and perspective on the future development of heteroatom zeolites in low-cost preparation and practical application are proposed.展开更多
Mesoporous semiconducting metal oxides(SMOs)heterojunctions are appealing sensors for gas detecting.However,due to the different hydrolysis and condensation mechanism of every metal precursor and the contradiction bet...Mesoporous semiconducting metal oxides(SMOs)heterojunctions are appealing sensors for gas detecting.However,due to the different hydrolysis and condensation mechanism of every metal precursor and the contradiction between high crystallinity and high surface area,the synthesis of mesoporous SMOs heterojunctions with highly o rdered mesostructures,highly crystallized frameworks,and high surface area remains a huge challenge.In this work,we develop a novel"acid-base pair"adjusted solvent evaporation induced self-assembly(EISA)strategy to prepare highly crystallized ordered mesoporous TiO2/WO3(OM-TiO2/WO3)heterojunctions.The WCl6 and titanium isopropoxide(TIPO)are used as the precursors,respectively,which function as the"acid-base pair",enabling the coassembly with the structure directing agent(PEO-b-PS)into highly ordered meso structures.In addition,PEO-b-PS can be converted to rigid carbon which can protect the meso structures from collapse during the crystallization process.The resultant OM-TiO2/WO3 heterojunctions possess primitive cubic mesostructures,large pore size(~21.1 nm),highly crystalline frameworks and surface area(~98 m2/g).As a sensor for acetone,the obtained OM-TiO2/WO3 show excellent re sponse/recovery perfo rmance(3 s/5 s),good linear dependence,repeatability,selectivity,and long-term stability(35 days).展开更多
The regeneration of articular cartilage remains a great challenge due to the difficulty in effectively enhancing spontaneous healing.Recently,the combination of implanted stem cells,suitable biomaterials and bioactive...The regeneration of articular cartilage remains a great challenge due to the difficulty in effectively enhancing spontaneous healing.Recently,the combination of implanted stem cells,suitable biomaterials and bioactive molecules has attracted attention for tissue regeneration.In this study,a novel injectable nanocomposite was rationally designed as a sustained release platform for enhanced cartilage regeneration through integration of a chitosan-based hydrogel,articular cartilage stem cells(ACSCs)and mesoporous SiO_(2)nanoparticles loaded with anhydroicaritin(AHI).The biocompatible engineered nanocomposite acting as a novel 3D biomimetic extracellular matrix exhibited a remarkable sustained release effect due to the synergistic regulation of the organic hydrogel framework and mesopore channels of inorganic mSiO_(2)nanoparticles(mSiO_(2)NPs).Histological assessment and biomechanical tests showed that the nanocomposites exhibited superior performance in inducing ACSCs proliferation and differentiation in vitro and promoting extracellular matrix(ECM)production and cartilage regeneration in vivo.Such a novel multifunctional biocompatible platform was demonstrated to significantly enhance cartilage regeneration based on the sustained release of AHI,an efficient bioactive natural small molecule for ACSCs chondrogenesis,within the hybrid matrix of hydrogel and mSiO_(2)NPs.Hence,the injectable nanocomposite holds great promise for use as a 3D biomimetic extracellular matrix for tissue regeneration in clinical diagnostics.展开更多
A versatile wet impregnation method was employed to conveniently and controllably deposit Fe_2O_3 nanoparticles on zeolites including commercial Y, mordenite and ZSM-5 with the similar framework Si/Al ratios and cryst...A versatile wet impregnation method was employed to conveniently and controllably deposit Fe_2O_3 nanoparticles on zeolites including commercial Y, mordenite and ZSM-5 with the similar framework Si/Al ratios and crystal sizes, respectively. The ultrafine Fe_2O_3 nanoparticles in size of 5 nm can be highly dispersed on zeolite Y matrix due to its much better wettability than ZSM-5 and mordenite. By using the obtained Fe_2O_3/zeolite composite as the heterogeneous Fenton-like catalysts, the degradation of phenol as a model reaction was systematically investigated, including the zeolite supports, particle size and dispersion of Fe_2O_3, and reaction conditions of H_2O_2 concentration, temperature, and pH value. The catalyst based on zeolite Y with Fe loading of 9% exhibited the best phenol degradation efficiency (> 90%)in neutral pH within 2 h. Its high catalytic activity in Fenton reaction can be attributed to the bifunctional properties of strong surface BrФnsted acidity and high reactivity of octahedral Fe^(3+) in the highlydispersed ultrafine Fe_2O_3 nanoparticles in size of 5 nm, which were the primary active centers to quickly decompose H_2O_2 into hydroxyl radicals. Since phenol degradation can be performed under mild conditions of ambient temperature (283-323 K) and a wide pH range (4.0-7.0), the catalysts can be easily recovered for recyclable use with stable degradation activity, which own the immense potential in deep treatment of organic pollutants in industrial wastewater.展开更多
Lithium sulfur(Li-S) batteries are regarded as promising candidates for next-generation rechargeable batteries. However, the insulation characteristic of sulfur and severe polysulfide dissolution hindered their develo...Lithium sulfur(Li-S) batteries are regarded as promising candidates for next-generation rechargeable batteries. However, the insulation characteristic of sulfur and severe polysulfide dissolution hindered their development. We presented a facile approach to fabricate Li-S batteries by coating commercial carbon nanotube or graphene slurries on normal sulfur cathode electrode to construct a dual-layer cathode electrode. The conductive CNT or graphene layer could not only improve the conductivity of sulfur cathode, but also suppress the polysulfide diffusion. The CNT@S cathode delivered a high reversible capacity of 740 mAh/g over 300 cycles at 1 C and 870 mAh/g over 100 cycles at 0.2 C. Furthermore, this strategy could be realized on the commercial product line of lithium-ion batteries, which made it possible to large-scale produce Li-S batteries.展开更多
Photo-responsive azobenzene (ABZ) derivatives with different end groups (R) as photoswitchable molecules were employed to construct self-assembled monolayers (SAMs) on silicon substrate by using 3-glycidoxypropy...Photo-responsive azobenzene (ABZ) derivatives with different end groups (R) as photoswitchable molecules were employed to construct self-assembled monolayers (SAMs) on silicon substrate by using 3-glycidoxypropyltrimethoxysilane (GPTS) as the bridging molecules. The assembly process was optimized by changing various parameters, including the type and concentration of ABZ derivatives, reaction time, etc. The obtained SAMs were fully characterized and evaluated using UV spectroscopy, atomic force microscope (AFM), elllipsometer, static contact angle and X-ray photoelectron spectroscopy (XPS). It is found that the end group property of azobenzene derivatives is critical to the obtained SAMs' photoresponsive properties. Compared with hydrophobic compounds (4-(4'-aminophenylazo) benzoic acid, ABZ-CF3), the hydrophilic compounds (4-(4'-aminophenylazo) benzoic acid, ABZ-COOH) show excellent reversible photoswitching performance with a large contact angle change of 35° under oDtimized process, and the SAMs are removable bv thermal treatment at 240 ℃ in air for onlv 5 min.展开更多
Latent fingerprints are extremely vital for personal identification and criminalinvestigation,and potential information recognition techniques have been widelyused in the fields of information and communication electr...Latent fingerprints are extremely vital for personal identification and criminalinvestigation,and potential information recognition techniques have been widelyused in the fields of information and communication electronics.Although physicalpowder dusting methods have been frequently employed to develop latent fingerprintsand most of them are carried out by using single component powders ofmicron-sized fluorescent particles,magnetic powders,or metal particles,there isstill an enormous challenge in producing high-resolution image of latent fingerprintsat different backgrounds or substrates.Herein,a novel and effectivenanoimpregnation method is developed to synthesize bifunctional magnetic fluorescentmesoporous microspheres for latent fingerprints visualization by growthof mesoporous silica(mesoSiO_(2))on magical Fe_(3)O_(4) core and then deposition offluorescent YVO4:Eu^(3+)nanoparticles in the mesopores.The obtainedFe_(3)O_(4)@mesoSiO_(2)@YVO4:Eu^(3+)microspheres possess spatially isolated magneticcore and fluorescent shell which were insulated by mesoporous silica layer.Dueto their small particle size of submicrometer scale,high magnetization and lowmagnetic remanence as well as the combined magnetic and fluorescent properties,the microspheres show superior performance in visual latent fingerprint recognitionwith high contrast,high anti-interference,and sensitivity as well as goodretention on multifarious substrates regardless of surface permeability,roughness,refraction,colorfulness,and background fluorescence interference,and it makesthem ideal candidates for practical application in fingerprint visualization andeven magneto-optic information storage.展开更多
Green and recyclable solid acid catalysts are in urgent demand as a substitute for conventional liquid mineral acids.In this work,a series of novel sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspher...Green and recyclable solid acid catalysts are in urgent demand as a substitute for conventional liquid mineral acids.In this work,a series of novel sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspheres(Fe_(3)O_(4)@C-SO_(3)H)have been designed and synthesized as an efficient and recyclable heterogeneous acid catalyst.For the synthesis,core-shell Fe_(3)O_(4)@RF(resorcinol-formaldehyde)microspheres with tunable shell thickness were achieved by interfacial polymerization on magnetic Fe_(3)O_(4)microspheres.After high-temperature carbonization,the microspheres were eventually treated by surface sulfonation,re sulting in Fe_(3)O_(4)@C-x-SO_(3)H(x stands for carbonization temperature)microspheres with abundant surface SO_(3)H groups.The obtained microspheres possess uniform core-shell structure,partially-graphitized carbon skeletons,superparamagnetic property,high magnetization saturation value of 10.6 emu/g,and rich SO_(3)H groups.The surface acid amounts can be adju sted in the range of 0.59-1.04 mmol/g via sulfonation treatment of carbon shells with different graphitization degrees.The magnetic Fe_(3)O_(4)@C-x-SO_(3)H microspheres were utilized as a solid acid catalyst for the acetalization reaction between benzaldehyde and ethylene glycol,demonstrating high selectivity(97%)to benzaldehyde ethylene glycol acetal.More importantly,by applying an external magnetic field,the catalysts can be easily separated from the heterogeneous reaction solutions,which later show well preserved catalytic activity even after 9 cycles,revealing good recyclability and high stability.展开更多
Magnetic assembly at the nanoscale level brings potential possibilities in obtaining novel delicate nanostructures with unique physical, photonic or electronic properties. Interface surfactant micelle-directed assembl...Magnetic assembly at the nanoscale level brings potential possibilities in obtaining novel delicate nanostructures with unique physical, photonic or electronic properties. Interface surfactant micelle-directed assembly strategy holds great promising in fabricating ordered mesoporous materials with multifunctionality and pore parameter tunability. Combing these, herein, one-dimensional (1D) nanochains with well-aligned silica-coated magnetic particles as core and mesoporous aluminosilicate as shell are rational fabricated for the first time through magnetic field induced interface coassembly in biliquid system followed by the incorporation of Al species via in-situ chemical modification and transformation strategy. The obtained magnetic mesoporous aluminosilicate nanochains (MMAS-NCs) possess well-defined core-shell-shell sandwich nanostructure, tunable perpendicular mesopore channels in the shell (2.7–7.6 nm), high surface area (359 m^(2)·g^(-1)), abundant acidic sites, and superparamagnetism with a magnetization saturation of 13.8 emu·g^(-1). Thanks to the unique properties, the MMAS-NCs exhibit excellent performance in acting as magnetically recyclable superior solid acid catalysts and nanostirrers with high conversion of over 96.8%, selectivity of 95.0% in the deprotection reaction of benzaldehyde dimethylacetal to benzaldehyde. Moreover, MMAS-NCs exhibit an interesting pore size effect on the catalytic activity, namely, in the pore size range of 2–8 nm, the catalysts with larger pores show significantly enhanced catalytic activity due to the balanced mass transport and density of surface active sites.展开更多
To achieve real-time monitoring of humidity in various applications,we prepared facile and ultra-thin CoAl layered double hydroxide(CoAl LDH)nanosheets to engineer quartz crystal microbalances(QCM).The characteristics...To achieve real-time monitoring of humidity in various applications,we prepared facile and ultra-thin CoAl layered double hydroxide(CoAl LDH)nanosheets to engineer quartz crystal microbalances(QCM).The characteristics of CoAl LDH were investigated by transmission electron microscopy(TEM),X-ray diffraction(XRD),X-ray photoelectric spectroscopy(XPS),Brunauer–Emmett–Telle(BET),atomic force microscopy(AFM)and zeta potential.Due to their large specific surface area and abundant hydroxyl groups,CoAl LDH nanosheets exhibit good humidity sensing performance.In a range of 11.3%and 97.6%relative humidity(RH),the sensor behaved an ultrahigh sensitivity(127.8 Hz/%RH),fast response(9.1 s)and recovery time(3.1 s),low hysteresis(3.1%RH),good linearity(R^(2)=0.9993),stability and selectivity.Besides,the sensor can recover the initial response frequency after being wetted by deionized water,revealing superior self-recovery ability under high humidity.Based on in-situ Fourier transform infrared spectroscopy(FT-IR),the adsorption mechanism of CoAl LDH toward water molecules was explored.The QCM sensor can distinguish different respiratory states of people and wetting degree of fingers,as well as monitor the humidity in vegetable packaging,suggesting excellent properties and a promising application in humidity sensing.展开更多
Acephate pesticide contamination in agricultural production has caused serious human health problems.Metal oxide semiconductor(MOS)gas sensor can be used as a portable and promising alternative tool for efficiently de...Acephate pesticide contamination in agricultural production has caused serious human health problems.Metal oxide semiconductor(MOS)gas sensor can be used as a portable and promising alternative tool for efficiently detection of acephate.In this study,hierarchical assembled SnO_(2)nanosphere,SnO_(2)hollow nanosphere and SnO_2 nanoflower were synthesized respectively as high efficiency sensing materials to build rapid and selective acephate pesticide residues sensors.The morphologies of different SnO_(2)3 D nanostructures were characterized by various material characterization technology.The sensitive performance test results of the 3 D SnO_(2)nanomaterials towards acephate show that hollow nanosphere SnO_(2)based sensor displayed preferable sensitivity,selectivity,and rapid response(9 s)properties toward acephate at the optimal working temperature(300℃).This SnO_(2)hollow nanosphere based gas sensor represents a useful tool for simple and highly effective monitoring of acephate pesticide residues in food and environment.According to the characterization results,particularly Brunauer-Emmett-Teller(BET)and Ultraviolet-Visible Spectroscopy(UV-vis),the obvious and fast response can be attributed to the mesoporous hollow nanosphere structure and appropriate band gap of SnO_2 hollow nanosphere.展开更多
Among various gas sensing materials, metal oxide semiconductors have shown great potential as resistive type sensors. The ordered porous structural metal oxide semiconductors with well-defined meso- or macro-pores che...Among various gas sensing materials, metal oxide semiconductors have shown great potential as resistive type sensors. The ordered porous structural metal oxide semiconductors with well-defined meso- or macro-pores chemically synthesized via soft-templating method and nanocasting strategy have high porosity, highly interconnected pore channels and high surface area with enormous active sites for interacting with gaseous molecules. These features enable them good performance in gas sensing, including high sensitivity, fast response and recovery, good selectivity. This review gives a comprehensive summary about the porous metal oxides with focus on the synthesis methods, structure related properties, as well as the modification strategies for gas sensing improved performances.展开更多
Highly luminescent colloidal nanocrystals have wide applications in bioimaging and various optoelectronic devices.Herein we report a facile and mild procedure by combining S2-treatment and binary ligand passivation,wh...Highly luminescent colloidal nanocrystals have wide applications in bioimaging and various optoelectronic devices.Herein we report a facile and mild procedure by combining S2-treatment and binary ligand passivation,which can efficiently enhance the luminescent property of CdSe nanocrystals at room temperature.The photoluminescence quantum yield of as-treated CdSe nanocrystals exhibits drastic enhancement(e.g.,188 times for CdSe nanorods)after this dual-passivation treatment.The methodology proposed here can be applied to various CdSe nanocrystals,regardless of their sizes,shapes,and crystal structures.展开更多
The rapid development of internet and internet of things brings new opportunities for the expansion of intelligent sensors,and acetone as a major disease detection indicator(i.e.,diabetes)making it become extremely im...The rapid development of internet and internet of things brings new opportunities for the expansion of intelligent sensors,and acetone as a major disease detection indicator(i.e.,diabetes)making it become extremely important clinical indicator.Herein,uniform mesoporous ZnO spheres were successfully synthesized via novel formaldehyde-assisted metal-ligand crosslinking strategy.In order to adjust the pore structure of mesoporous ZnO,various mesoporous ZnO spheres were synthesized by changing weight percentage of Zn(NO_(3))_(2)·6 H_(2)O to tannic acid(TA).Moreover,highly active heterojunction mesoporous ZnO/Co_(3)O_(4)has been fabricated based on as-prepared ultra-small Co_(3)O_(4)nanocrystals(ca.3 nm)and mesoporous ZnO spheres by flexible impregnation technique.Profit from nano-size effect and synergistic effect of p-n heterojunction,mesoporous ZnO/Co_(3)O_(4)exhibited excellent acetone sensing performance with high selectivity,superior sensitivity and responsiveness.Typically,5 wt%Co_(3)O_(4)embedded mesoporous ZnO sphere showed prominent acetone response(ca.46 for 50 ppm),which was about 11.5 times higher than that in pure ZnO sensing device,and it was also endowed high cyclic stability.The nanocrystals embedded hybrid material is expected to be used as promising efficient material in the field of catalysis and gas sensing.展开更多
As a typical family of volatile toxic compounds,benzene derivatives are massive emission in industrial production and the automobile field,causing serious threat to human and environment.The reliable and convenient de...As a typical family of volatile toxic compounds,benzene derivatives are massive emission in industrial production and the automobile field,causing serious threat to human and environment.The reliable and convenient detection of low concentration benzene derivatives based on intelligent gas sensor is urgent and of great significance for environmental protection.Herein,through heteroatomic doping engineering,rare-earth gadolinium(Gd)doped mesoporous WO_(3)with uniform mesopores(15.7–18.1 nm),tunable high specific surface area(52–55 m^(2)·g^(−1)),customized crystalline pore walls,was designed and utilized to fabricate highly sensitive gas sensors toward benzene derivatives,such as ethylbenzene.Thanks to the high-density oxygen vacancies(OV)and significantly increased defects(W^(5+))produced by Gd atoms doping into the lattice of WO_(3)octahedron,Gd-doped mesoporous WO_(3)exhibited excellent ethylbenzene sensing performance,including high response(237 vs.50 ppm),rapid response–recovery dynamic(13 s/25 s vs.50 ppm),extremely low theoretical detection limit of 24 ppb.The in-situ diffuse reflectance infrared Fourier transform and gas chromatograph-mass spectrometry results revealed the gas sensing process underwent a catalytic oxidation conversion of ethylbenzene into alcohol species,benzaldehyde,acetophenone,and carboxylate species along with the resistance change of the Gd-doped mesoporous WO_(3)based sensor.Moreover,a portable smart gas sensing module was fabricated and demonstrated for real-time detecting ethylbenzene,which provided new ideas to design heteroatom doped mesoporous materials for intelligent sensors.展开更多
The freshness of seafood can be judged by detecting the concentration of triethylamine(TEA). In this work, 2D Cu O porous nanosheets(Cu O PNs) were prepared by a graphene oxide template method and their particle sizes...The freshness of seafood can be judged by detecting the concentration of triethylamine(TEA). In this work, 2D Cu O porous nanosheets(Cu O PNs) were prepared by a graphene oxide template method and their particle sizes were regulated by changing the calcination temperature. Their structure, morphology and gas sensing performances were investigated by various characterization methods. The response(Rg/Ra) of the gas sensor based on Cu O PNs calcined at 700oC was as high as 440-100 ppm TEA at the operating temperature of 40 ℃. The detection limit was as low as 0.25 ppm. In addition, the gas sensor has good selectivity and stability. The excellent TEA sensitivity is mainly resulted from the appropriate particle size and loose porous framework. This work not only paves the way to explore the novel low temperature TEA gas sensors, but also provides deep insight on improving the structure and properties of gas sensitive materials by controlling the calcination temperature.展开更多
基金financially supported by the National Key Research and Development Program(No.2022YFE0100400)National Natural Science Foundation of China(No.21701130)+2 种基金Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.20JC1415300)State Key Laboratory of Transducer Technology of China(No.SKT2207)Key Research and Development Program of Shaanxi(No.2021GY-225)。
文摘In persulfate-based advanced oxidation process(PS-AOPs),fixing nanosized metal oxide on processable substrates is highly desirable to avoid the aggregation and loss of nanocatalysts during the practical application.However,it is still challenging to develop a versatile strategy for the deposition of metal oxide nanocatalysts on various substrates with different physicochemical properties.Herein,polyphenols are utilized as a“molecular glue”and reductant to mediate the interfacial deposition of MnO_(2) nanocatalysts on different substrates.MnO_(2) nanocatalysts were in-situ grown on macroscope mineral substrates(e.g.,airstone)via an interfacial redox strategy between tannic acid(TA)and oxidized KMnO4,and then employed as a fixed catalyst of peroxymonosulfate(PMS)activation for treating pharmaceutical and personal care products(PPCPs)in water.The fixed MnO_(2) exhibited superior catalytic performance toward different PPCPS via a singlet oxygen(^(1)O_(2))-dominated nonradical oxidation pathway.PPCPs in the secondary effluent of wastewater treatment plants could be effectively removed by a fixed-bed column of the fixed MnO_(2) with long term stability.Redox cycle of Mn^(4+)/Mn^(3+)and surface hydroxyl group of the fixed MnO_(2) was proved to be responsible for the activation of PMS.This work provides a new avenue for developing fixed metal oxides for sustainable water treatment.
基金supported by the National Natural Science Foundation of China(Nos.22125501,U22A20152,22105043,52225204,52173233)Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.20JC1415300)+1 种基金the state key laboratory of Transducer Technology of China(No.SKT2207)the Fundamental Research Funds for the Central Universities(No.20720220010)。
文摘Benzene series as highly toxic gases have inevitably entered human life and produce great threat to human health and ecological environment,and thus it is distinctly meaningful to monitor benzene series with quickly,real-time and efficient technique.Herein,novel sulfur-doped mesoporous WO_(3)materials were synthesized via classical in-situ solvent evaporation induced co-assembly strategy combined with doping engineering,which possessed highly crystallized frameworks,high specific surface area(40.9–63.8 m^(2)/g)and uniform pore size(~18 nm).Benefitting from abundant oxygen vacancy and defects via S-doping,the tailored mesoporous S/m WO_(3)exhibited excellent benzene sensing performance,including high sensitivity(50 ppm vs.48),low detection limit(ca.500 ppb),outstanding selectivity and favorable stability.In addition,the reduction of band gap resulted from S-doping promotes the carrier migration in the sensing materials and the reaction at the gas–solid sensing interfaces.It provides brand-new approach to design sensitive materials with multiple reaction sites.
基金This work was supported by the National Basic Research Program of China (Nos. 2012CB224805 and 2013CB934104), Shanghai Sci. & Tech. Committee (No. 14JC1400700), the National Natural Science Foundation of China (Nos. 21210004, 51372041, 51422202 and U1463206), the innovation program (No. 13ZZ004), the "Shu Guang" Project (No. 13SG02) supported by Shanghai Municipal Education Commission, Qatar University startup grant # QUSG-CAS-MST-14/15-1, and National Youth Top Talent Support Program of National High-level Personnel of Special Support Program. We extend our appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project No RGP-227.
文摘Hollow TiO2-x porous microspheres consisted of numerous well-crystalline nanocrystals with superior structural integrity and robust hollow interior were synthesized by a facile sol-gel template-assisted approach and two-step carbonprotected calcination method, together with hydrogenation treatment. They exhibit a uniform diameter of -470 nm with a thin porous wall shell of -50 nm in thickness. The Brunauer-Emmett-Teller (BET) surface area and pore volume are -19 m2/g and 0.07 crnB/g, respectively. These hollow TiOR_x porous microspheres demonstrated excellent lithium storage performance with stable capacity retention for over 300 cycles (a high capacity of 151 mAh/g can be obtained up to 300 cycles at I C, retaining 81.6% of the initial capacity of 185 mAh/g) and enhanced rate capability even up to 10 C (222, 192, 121, and 92.1 mAh/g at current rates of 0.5, 1, 5, and 10 C, respectively). The intrinsic increased conductivity of the hydrogenated TiO2 microspheres and their robust hollow structure benefidal for lithium ion-electron diffusion and mitigating the structural strain synergistically contribute to the remarkable improvements in their cycling stability and rate performance.
文摘Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, the obtained functional magnetic microspheres as heterogeneous catalysts showed superior performance in catalyzing the epoxidation of styrene with extraordinary high conversion (89.5%) and selectivity (90.8%) towards styrene oxide. It is believed that the construction process of these fascinating materials features many implications for creating other functional nanocomposites.
基金supported by the National Natural Science Foundation of China(Nos.21875044,21673048)Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.17JC1400100)+2 种基金the support by the state key laboratory of Transducer Technology of China(No.SKT1904)Program of Shanghai Academic Research Leader(No.19XD1420300)Research Supporting Project(No.RSP-2019/155)by King Saud University。
文摘Incorporation of heteroatoms into the framewo rk of zeolites has become a significant strategy to improve their performance in catalysis and adsorption,because the obtained heteroatom zeolites exhibit quite different properties from the conventional aluminosilicate zeolites in aspects of surface acidity,pore structures,particle size and so on.In this review,the progress on the heteroatom zeolites including their synthesis and application is highlighted.First,the recent advance on the design and synthesis of different heteroatom zeolites is summarized.Special emphasis is placed on the introduction and comparison of three typical methods,including the direct synthesis,post synthesis and improved direct synthesis,for the traditional heteroatom zeolites(such as TS-1,Sn-MFI,Sn-β) and newly-reported heteroatom zeolites(such as W-MFI,Mo-MFI).According to their intrinsic characteristics,the application of heteroatom zeolites in diverse fields,such as production of fine chemicals,air pollution control and biomass conversion is then discussed.Finally,the challenges and perspective on the future development of heteroatom zeolites in low-cost preparation and practical application are proposed.
基金supported by the National Natural Science Foundation of China(Nos.51822202 and 51772050)China Postdoctoral Science Foundation(No.2019M651342)+2 种基金Shanghai Rising-Star Program(No.18QA1400100)Youth Top-notch Talent Support Program of Shanghai,the Shanghai Committee of Science and Technology,China(No.19520713200)DHU Distinguished Young Professor Program and Fundamental Research Funds for the Central Universities。
文摘Mesoporous semiconducting metal oxides(SMOs)heterojunctions are appealing sensors for gas detecting.However,due to the different hydrolysis and condensation mechanism of every metal precursor and the contradiction between high crystallinity and high surface area,the synthesis of mesoporous SMOs heterojunctions with highly o rdered mesostructures,highly crystallized frameworks,and high surface area remains a huge challenge.In this work,we develop a novel"acid-base pair"adjusted solvent evaporation induced self-assembly(EISA)strategy to prepare highly crystallized ordered mesoporous TiO2/WO3(OM-TiO2/WO3)heterojunctions.The WCl6 and titanium isopropoxide(TIPO)are used as the precursors,respectively,which function as the"acid-base pair",enabling the coassembly with the structure directing agent(PEO-b-PS)into highly ordered meso structures.In addition,PEO-b-PS can be converted to rigid carbon which can protect the meso structures from collapse during the crystallization process.The resultant OM-TiO2/WO3 heterojunctions possess primitive cubic mesostructures,large pore size(~21.1 nm),highly crystalline frameworks and surface area(~98 m2/g).As a sensor for acetone,the obtained OM-TiO2/WO3 show excellent re sponse/recovery perfo rmance(3 s/5 s),good linear dependence,repeatability,selectivity,and long-term stability(35 days).
基金supported by grants from The Ministry of Science and Technology of China(2020YFC2002800)the National Natural Science Foundation of China(81830078,21875044),NO.2021-NCRC-CXJJ-ZH-35 of Clinical Application-oriented Medical Innovation Foundation from National Clinical Research Center for Orthopedics,Sports Medicine&Rehabilitation and Jiangsu China-Israel Industrial Technical Research Institute Foundation,Sino-Swiss collaborative project from Ministry of Science and Technology(2015DFG32200)+1 种基金Science and Technology Commission of Shanghai Municipality(No.19XD1434100,19ZR1433100)Shanghai Jiaotong University“Cross research fund of Medical Engineering”(YG2019ZDA22).
文摘The regeneration of articular cartilage remains a great challenge due to the difficulty in effectively enhancing spontaneous healing.Recently,the combination of implanted stem cells,suitable biomaterials and bioactive molecules has attracted attention for tissue regeneration.In this study,a novel injectable nanocomposite was rationally designed as a sustained release platform for enhanced cartilage regeneration through integration of a chitosan-based hydrogel,articular cartilage stem cells(ACSCs)and mesoporous SiO_(2)nanoparticles loaded with anhydroicaritin(AHI).The biocompatible engineered nanocomposite acting as a novel 3D biomimetic extracellular matrix exhibited a remarkable sustained release effect due to the synergistic regulation of the organic hydrogel framework and mesopore channels of inorganic mSiO_(2)nanoparticles(mSiO_(2)NPs).Histological assessment and biomechanical tests showed that the nanocomposites exhibited superior performance in inducing ACSCs proliferation and differentiation in vitro and promoting extracellular matrix(ECM)production and cartilage regeneration in vivo.Such a novel multifunctional biocompatible platform was demonstrated to significantly enhance cartilage regeneration based on the sustained release of AHI,an efficient bioactive natural small molecule for ACSCs chondrogenesis,within the hybrid matrix of hydrogel and mSiO_(2)NPs.Hence,the injectable nanocomposite holds great promise for use as a 3D biomimetic extracellular matrix for tissue regeneration in clinical diagnostics.
基金sponsored by Shanghai Pujiang Program, China (No. 16PJ1401100)the Shanghai Committee of Science and Technology, China (No.15ZR1402000)+3 种基金Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (No. 17JC1400100)the NSF of China(No. 21673048)National Youth Top Talent Support Program of National High-Level Personnel of Special Support Program (Youth Top-notch Talent Support Program)the State Key Laboratory of Transducer Technology of China (No. SKT1503)
文摘A versatile wet impregnation method was employed to conveniently and controllably deposit Fe_2O_3 nanoparticles on zeolites including commercial Y, mordenite and ZSM-5 with the similar framework Si/Al ratios and crystal sizes, respectively. The ultrafine Fe_2O_3 nanoparticles in size of 5 nm can be highly dispersed on zeolite Y matrix due to its much better wettability than ZSM-5 and mordenite. By using the obtained Fe_2O_3/zeolite composite as the heterogeneous Fenton-like catalysts, the degradation of phenol as a model reaction was systematically investigated, including the zeolite supports, particle size and dispersion of Fe_2O_3, and reaction conditions of H_2O_2 concentration, temperature, and pH value. The catalyst based on zeolite Y with Fe loading of 9% exhibited the best phenol degradation efficiency (> 90%)in neutral pH within 2 h. Its high catalytic activity in Fenton reaction can be attributed to the bifunctional properties of strong surface BrФnsted acidity and high reactivity of octahedral Fe^(3+) in the highlydispersed ultrafine Fe_2O_3 nanoparticles in size of 5 nm, which were the primary active centers to quickly decompose H_2O_2 into hydroxyl radicals. Since phenol degradation can be performed under mild conditions of ambient temperature (283-323 K) and a wide pH range (4.0-7.0), the catalysts can be easily recovered for recyclable use with stable degradation activity, which own the immense potential in deep treatment of organic pollutants in industrial wastewater.
基金the financial support from the National Natural Science Foundation of China(Nos.51573030,51573028and 51773042)
文摘Lithium sulfur(Li-S) batteries are regarded as promising candidates for next-generation rechargeable batteries. However, the insulation characteristic of sulfur and severe polysulfide dissolution hindered their development. We presented a facile approach to fabricate Li-S batteries by coating commercial carbon nanotube or graphene slurries on normal sulfur cathode electrode to construct a dual-layer cathode electrode. The conductive CNT or graphene layer could not only improve the conductivity of sulfur cathode, but also suppress the polysulfide diffusion. The CNT@S cathode delivered a high reversible capacity of 740 mAh/g over 300 cycles at 1 C and 870 mAh/g over 100 cycles at 0.2 C. Furthermore, this strategy could be realized on the commercial product line of lithium-ion batteries, which made it possible to large-scale produce Li-S batteries.
基金financially supported by The Dow Chemical Company
文摘Photo-responsive azobenzene (ABZ) derivatives with different end groups (R) as photoswitchable molecules were employed to construct self-assembled monolayers (SAMs) on silicon substrate by using 3-glycidoxypropyltrimethoxysilane (GPTS) as the bridging molecules. The assembly process was optimized by changing various parameters, including the type and concentration of ABZ derivatives, reaction time, etc. The obtained SAMs were fully characterized and evaluated using UV spectroscopy, atomic force microscope (AFM), elllipsometer, static contact angle and X-ray photoelectron spectroscopy (XPS). It is found that the end group property of azobenzene derivatives is critical to the obtained SAMs' photoresponsive properties. Compared with hydrophobic compounds (4-(4'-aminophenylazo) benzoic acid, ABZ-CF3), the hydrophilic compounds (4-(4'-aminophenylazo) benzoic acid, ABZ-COOH) show excellent reversible photoswitching performance with a large contact angle change of 35° under oDtimized process, and the SAMs are removable bv thermal treatment at 240 ℃ in air for onlv 5 min.
基金China Postdoctoral Science Foundation,Grant/Award Numbers:2021M690660,2021TQ0066Key Basic Research Program of Science and Technology Commission of Shanghai Municipality,Grant/Award Number:20JC1415300+1 种基金National Natural Science Foundation of China,Grant/Award Numbers:21701153,21875044Program of Shanghai Academic Research Leader,Grant/Award Number:19XD1420300。
文摘Latent fingerprints are extremely vital for personal identification and criminalinvestigation,and potential information recognition techniques have been widelyused in the fields of information and communication electronics.Although physicalpowder dusting methods have been frequently employed to develop latent fingerprintsand most of them are carried out by using single component powders ofmicron-sized fluorescent particles,magnetic powders,or metal particles,there isstill an enormous challenge in producing high-resolution image of latent fingerprintsat different backgrounds or substrates.Herein,a novel and effectivenanoimpregnation method is developed to synthesize bifunctional magnetic fluorescentmesoporous microspheres for latent fingerprints visualization by growthof mesoporous silica(mesoSiO_(2))on magical Fe_(3)O_(4) core and then deposition offluorescent YVO4:Eu^(3+)nanoparticles in the mesopores.The obtainedFe_(3)O_(4)@mesoSiO_(2)@YVO4:Eu^(3+)microspheres possess spatially isolated magneticcore and fluorescent shell which were insulated by mesoporous silica layer.Dueto their small particle size of submicrometer scale,high magnetization and lowmagnetic remanence as well as the combined magnetic and fluorescent properties,the microspheres show superior performance in visual latent fingerprint recognitionwith high contrast,high anti-interference,and sensitivity as well as goodretention on multifarious substrates regardless of surface permeability,roughness,refraction,colorfulness,and background fluorescence interference,and it makesthem ideal candidates for practical application in fingerprint visualization andeven magneto-optic information storage.
基金financially supported by the National Natural Science Foundation of China(Nos.21875044,52073064,22005058 and 22005057)National Key R&D Program of China(No.2020YFB2008600)+3 种基金Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.20JC1415300)Program of Shanghai Academic Research Leader(No.19XD1420300)China Post-doctoral Science Foundation(Nos.2020M670973,BX20200085)the State Key Laboratory of Transducer Technology of China(No.SKT1904)。
文摘Green and recyclable solid acid catalysts are in urgent demand as a substitute for conventional liquid mineral acids.In this work,a series of novel sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspheres(Fe_(3)O_(4)@C-SO_(3)H)have been designed and synthesized as an efficient and recyclable heterogeneous acid catalyst.For the synthesis,core-shell Fe_(3)O_(4)@RF(resorcinol-formaldehyde)microspheres with tunable shell thickness were achieved by interfacial polymerization on magnetic Fe_(3)O_(4)microspheres.After high-temperature carbonization,the microspheres were eventually treated by surface sulfonation,re sulting in Fe_(3)O_(4)@C-x-SO_(3)H(x stands for carbonization temperature)microspheres with abundant surface SO_(3)H groups.The obtained microspheres possess uniform core-shell structure,partially-graphitized carbon skeletons,superparamagnetic property,high magnetization saturation value of 10.6 emu/g,and rich SO_(3)H groups.The surface acid amounts can be adju sted in the range of 0.59-1.04 mmol/g via sulfonation treatment of carbon shells with different graphitization degrees.The magnetic Fe_(3)O_(4)@C-x-SO_(3)H microspheres were utilized as a solid acid catalyst for the acetalization reaction between benzaldehyde and ethylene glycol,demonstrating high selectivity(97%)to benzaldehyde ethylene glycol acetal.More importantly,by applying an external magnetic field,the catalysts can be easily separated from the heterogeneous reaction solutions,which later show well preserved catalytic activity even after 9 cycles,revealing good recyclability and high stability.
基金This work was supported by the National Natural Science Foundation of China(Nos.21701153,21875044,52073064,22005058,and 22005057)the National Key R&D Program of China(No.2020YFB2008600)+4 种基金Program of Shanghai Academic Research Leader(No.19XD1420300)the State Key Laboratory of Transducer Technology of China(No.SKT1904)China Postdoctoral Science Foundation(Nos.2020M670973 and BX20200085)Sichuan Science and Technology Program(No.2020YJ0243)The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP-17-94(2).
文摘Magnetic assembly at the nanoscale level brings potential possibilities in obtaining novel delicate nanostructures with unique physical, photonic or electronic properties. Interface surfactant micelle-directed assembly strategy holds great promising in fabricating ordered mesoporous materials with multifunctionality and pore parameter tunability. Combing these, herein, one-dimensional (1D) nanochains with well-aligned silica-coated magnetic particles as core and mesoporous aluminosilicate as shell are rational fabricated for the first time through magnetic field induced interface coassembly in biliquid system followed by the incorporation of Al species via in-situ chemical modification and transformation strategy. The obtained magnetic mesoporous aluminosilicate nanochains (MMAS-NCs) possess well-defined core-shell-shell sandwich nanostructure, tunable perpendicular mesopore channels in the shell (2.7–7.6 nm), high surface area (359 m^(2)·g^(-1)), abundant acidic sites, and superparamagnetism with a magnetization saturation of 13.8 emu·g^(-1). Thanks to the unique properties, the MMAS-NCs exhibit excellent performance in acting as magnetically recyclable superior solid acid catalysts and nanostirrers with high conversion of over 96.8%, selectivity of 95.0% in the deprotection reaction of benzaldehyde dimethylacetal to benzaldehyde. Moreover, MMAS-NCs exhibit an interesting pore size effect on the catalytic activity, namely, in the pore size range of 2–8 nm, the catalysts with larger pores show significantly enhanced catalytic activity due to the balanced mass transport and density of surface active sites.
基金supported by the Shanghai Natural Science Foundation(No.21ZR1427500)the Agricultural Project of Shanghai Science and Technology Innovation Action Plan(No.19391901600).
文摘To achieve real-time monitoring of humidity in various applications,we prepared facile and ultra-thin CoAl layered double hydroxide(CoAl LDH)nanosheets to engineer quartz crystal microbalances(QCM).The characteristics of CoAl LDH were investigated by transmission electron microscopy(TEM),X-ray diffraction(XRD),X-ray photoelectric spectroscopy(XPS),Brunauer–Emmett–Telle(BET),atomic force microscopy(AFM)and zeta potential.Due to their large specific surface area and abundant hydroxyl groups,CoAl LDH nanosheets exhibit good humidity sensing performance.In a range of 11.3%and 97.6%relative humidity(RH),the sensor behaved an ultrahigh sensitivity(127.8 Hz/%RH),fast response(9.1 s)and recovery time(3.1 s),low hysteresis(3.1%RH),good linearity(R^(2)=0.9993),stability and selectivity.Besides,the sensor can recover the initial response frequency after being wetted by deionized water,revealing superior self-recovery ability under high humidity.Based on in-situ Fourier transform infrared spectroscopy(FT-IR),the adsorption mechanism of CoAl LDH toward water molecules was explored.The QCM sensor can distinguish different respiratory states of people and wetting degree of fingers,as well as monitor the humidity in vegetable packaging,suggesting excellent properties and a promising application in humidity sensing.
基金financially funded by the National Natural Science Foundation of China(No.31701678)the Key Project of Shanghai Agriculture Prosperity through Science and Technology(No.2019-02-08-00-15-F01147)+3 种基金the project of Shanghai Science and Technology Committee(No.19391901600)the Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.20JC1415300)the State Key Laborato ry of Transducer Technology of China(No.SKT1904)the Research Support Project number(No.RSP-2020/155),King Saud University,Riyadh,Saudi Arabia。
文摘Acephate pesticide contamination in agricultural production has caused serious human health problems.Metal oxide semiconductor(MOS)gas sensor can be used as a portable and promising alternative tool for efficiently detection of acephate.In this study,hierarchical assembled SnO_(2)nanosphere,SnO_(2)hollow nanosphere and SnO_2 nanoflower were synthesized respectively as high efficiency sensing materials to build rapid and selective acephate pesticide residues sensors.The morphologies of different SnO_(2)3 D nanostructures were characterized by various material characterization technology.The sensitive performance test results of the 3 D SnO_(2)nanomaterials towards acephate show that hollow nanosphere SnO_(2)based sensor displayed preferable sensitivity,selectivity,and rapid response(9 s)properties toward acephate at the optimal working temperature(300℃).This SnO_(2)hollow nanosphere based gas sensor represents a useful tool for simple and highly effective monitoring of acephate pesticide residues in food and environment.According to the characterization results,particularly Brunauer-Emmett-Teller(BET)and Ultraviolet-Visible Spectroscopy(UV-vis),the obvious and fast response can be attributed to the mesoporous hollow nanosphere structure and appropriate band gap of SnO_2 hollow nanosphere.
基金supported by the National Natural Science Foundation of China(Nos.51372041,51422202, and 21673048)the "Shu Guang" Project(No. 13SG02)supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation+3 种基金the National Youth Top-notch Talent Support Program in China, China Postdoctoral Science Foundation(No. KLH1615138)Shanghai Nature Science Foundation of China(Nos. 14ZR1416600 and 15ZR1402000)Shanghai Pujiang Program, China(No.16PJ1401100)the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP# 0094
文摘Among various gas sensing materials, metal oxide semiconductors have shown great potential as resistive type sensors. The ordered porous structural metal oxide semiconductors with well-defined meso- or macro-pores chemically synthesized via soft-templating method and nanocasting strategy have high porosity, highly interconnected pore channels and high surface area with enormous active sites for interacting with gaseous molecules. These features enable them good performance in gas sensing, including high sensitivity, fast response and recovery, good selectivity. This review gives a comprehensive summary about the porous metal oxides with focus on the synthesis methods, structure related properties, as well as the modification strategies for gas sensing improved performances.
基金financial support from the National Natural Science Foundation of China (NSFC,Nos.21872038 and 21733003)MOST (No.2017YFA0207303)Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (No.17JC1400100)
文摘Highly luminescent colloidal nanocrystals have wide applications in bioimaging and various optoelectronic devices.Herein we report a facile and mild procedure by combining S2-treatment and binary ligand passivation,which can efficiently enhance the luminescent property of CdSe nanocrystals at room temperature.The photoluminescence quantum yield of as-treated CdSe nanocrystals exhibits drastic enhancement(e.g.,188 times for CdSe nanorods)after this dual-passivation treatment.The methodology proposed here can be applied to various CdSe nanocrystals,regardless of their sizes,shapes,and crystal structures.
基金financially supported by the National Natural Science Foundation of China(Nos.21673048,21875044,52073064,22005058 and 22005057)National Key R&D Program of China(No.2018YFA0209401)+3 种基金Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.20JC1415300)Program of Shanghai Academic Research Leader(No.19XD1420300)the state key laboratory of Transducer Technology of China(No.SKT1904)supporting project number(No.RSP-2020/155)。
文摘The rapid development of internet and internet of things brings new opportunities for the expansion of intelligent sensors,and acetone as a major disease detection indicator(i.e.,diabetes)making it become extremely important clinical indicator.Herein,uniform mesoporous ZnO spheres were successfully synthesized via novel formaldehyde-assisted metal-ligand crosslinking strategy.In order to adjust the pore structure of mesoporous ZnO,various mesoporous ZnO spheres were synthesized by changing weight percentage of Zn(NO_(3))_(2)·6 H_(2)O to tannic acid(TA).Moreover,highly active heterojunction mesoporous ZnO/Co_(3)O_(4)has been fabricated based on as-prepared ultra-small Co_(3)O_(4)nanocrystals(ca.3 nm)and mesoporous ZnO spheres by flexible impregnation technique.Profit from nano-size effect and synergistic effect of p-n heterojunction,mesoporous ZnO/Co_(3)O_(4)exhibited excellent acetone sensing performance with high selectivity,superior sensitivity and responsiveness.Typically,5 wt%Co_(3)O_(4)embedded mesoporous ZnO sphere showed prominent acetone response(ca.46 for 50 ppm),which was about 11.5 times higher than that in pure ZnO sensing device,and it was also endowed high cyclic stability.The nanocrystals embedded hybrid material is expected to be used as promising efficient material in the field of catalysis and gas sensing.
基金the National Key R&D Program of China(No.2020YFB2008600)the National Natural Science Foundation of China(Nos.21875044,22125501,and 22105043)+4 种基金the Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.20JC1415300)the China Postdoctoral Science Foundation(Nos.2021TQ0066 and 2021M690660)the Fundamental Research Funds for the Central Universities(No.20720220010)the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,the young scientist project of MOE innovation platform,Donghua University(No.KF2120)the Foshan Science and Technology Innovation Program(No.2017IT100121).
文摘As a typical family of volatile toxic compounds,benzene derivatives are massive emission in industrial production and the automobile field,causing serious threat to human and environment.The reliable and convenient detection of low concentration benzene derivatives based on intelligent gas sensor is urgent and of great significance for environmental protection.Herein,through heteroatomic doping engineering,rare-earth gadolinium(Gd)doped mesoporous WO_(3)with uniform mesopores(15.7–18.1 nm),tunable high specific surface area(52–55 m^(2)·g^(−1)),customized crystalline pore walls,was designed and utilized to fabricate highly sensitive gas sensors toward benzene derivatives,such as ethylbenzene.Thanks to the high-density oxygen vacancies(OV)and significantly increased defects(W^(5+))produced by Gd atoms doping into the lattice of WO_(3)octahedron,Gd-doped mesoporous WO_(3)exhibited excellent ethylbenzene sensing performance,including high response(237 vs.50 ppm),rapid response–recovery dynamic(13 s/25 s vs.50 ppm),extremely low theoretical detection limit of 24 ppb.The in-situ diffuse reflectance infrared Fourier transform and gas chromatograph-mass spectrometry results revealed the gas sensing process underwent a catalytic oxidation conversion of ethylbenzene into alcohol species,benzaldehyde,acetophenone,and carboxylate species along with the resistance change of the Gd-doped mesoporous WO_(3)based sensor.Moreover,a portable smart gas sensing module was fabricated and demonstrated for real-time detecting ethylbenzene,which provided new ideas to design heteroatom doped mesoporous materials for intelligent sensors.
基金financially supported by the National Natural Science Foundation of China (No. 62071300)Science and Technology Commission of Shanghai Municipality (Nos. YDZX20213100003002, 19ZR1435200, 20490761100)+3 种基金Innovation Program of Shanghai Municipal Education Commission (No. 201901-07-00-07-E00015)Program of Shanghai Academic/Technology Research Leader (No. 19XD1422900)Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (No. 20JC1415300)Foshan Science and Technology Innovation Program (No. 2017IT 100121)。
文摘The freshness of seafood can be judged by detecting the concentration of triethylamine(TEA). In this work, 2D Cu O porous nanosheets(Cu O PNs) were prepared by a graphene oxide template method and their particle sizes were regulated by changing the calcination temperature. Their structure, morphology and gas sensing performances were investigated by various characterization methods. The response(Rg/Ra) of the gas sensor based on Cu O PNs calcined at 700oC was as high as 440-100 ppm TEA at the operating temperature of 40 ℃. The detection limit was as low as 0.25 ppm. In addition, the gas sensor has good selectivity and stability. The excellent TEA sensitivity is mainly resulted from the appropriate particle size and loose porous framework. This work not only paves the way to explore the novel low temperature TEA gas sensors, but also provides deep insight on improving the structure and properties of gas sensitive materials by controlling the calcination temperature.