Seed vigor is a crucial trait for the direct seeding of rice.Here we examined the genetic regulation of seed vigor traits in rice,including germination index(GI)and germination potential(GP),using a genome-wide associ...Seed vigor is a crucial trait for the direct seeding of rice.Here we examined the genetic regulation of seed vigor traits in rice,including germination index(GI)and germination potential(GP),using a genome-wide association study approach.One major quantitative trait locus,qGI6/qGP6,was identified simultaneously for both GI and GP.The candidate gene encoding the cytochrome c oxidase subunit 5B(OsCOX5B)was validated for qGI6/qGP6.The disruption of OsCOX5B caused the vigor traits to be significantly lower in Oscox5b mutants than in the japonica Nipponbare wild type(WT).Gene co-expression analysis revealed that OsCOX5B influences seed vigor mainly by modulating the tricarboxylic acid cycle process.The glucose levels were significantly higher while the pyruvic acid and adenosine triphosphate levels were significantly lower in Oscox5b mutants than in WT during seed germination.The elite haplotype of OsCOX5B facilitates seed vigor by increasing its expression during seed germination.Thus,we propose that OsCOX5B is a potential target for the breeding of rice varieties with enhanced seed vigor for direct seeding.展开更多
Seed aging tolerance during storage is generally an important trait for crop production, yet the role of small auxin-up RNA genes in conferring seed aging tolerance is largely unknown in rice. In this study, one small...Seed aging tolerance during storage is generally an important trait for crop production, yet the role of small auxin-up RNA genes in conferring seed aging tolerance is largely unknown in rice. In this study, one small auxin-up RNA gene, OsSAUR33, was found to be involved in the regulation of seed aging tolerance in rice. The expression of OsSAUR33 was significantly induced in aged seeds compared with unaged seeds during the seed germination phase. Accordingly, the disruption of OsSAUR33 significantly reduced seed vigor compared to the wild type(WT) in response to natural storage or artificial aging treatments. The rice OsSAUR33 gene promotes the vigor of aged seeds by enhancing their reactive oxygen species(ROS) level during seed germination, and the accumulation of ROS was significantly delayed in the aged seeds of Ossaur33 mutants in comparison with WT during seed germination. Hydrogen peroxide(H_(2)O_(2)) treatments promoted the vigor of aged seeds in various rice varieties. Our results provide timely theoretical and technical insights for the trait improvement of seed aging tolerance in rice.展开更多
Poor seedling emergence is a challenge for direct seeding of rice under deep-sowing field conditions.Here we reveal that UDP-glucosyltransferase OsUGT75A promotes rice seedling emergence under deepsowing conditions by...Poor seedling emergence is a challenge for direct seeding of rice under deep-sowing field conditions.Here we reveal that UDP-glucosyltransferase OsUGT75A promotes rice seedling emergence under deepsowing conditions by increasing shoot length.Expression of OsUGT75A was higher in the middle regions of the shoot and in shoots under deep-sowing conditions.Levels of free abscisic acid(ABA)and jasmonates(JA)were higher in shoots of OsUGT75A mutants than in those of wild-type plants,and OsUGT75A mutants were more sensitive to ABA and JA treatments.Reduced shoot length was attributed to higher ABA INSENSITIVE 3(OsABI3)expression and lower JASMONATE-ZIM domain protein(OsJAZ)expression in shoots.Shoot extension by OsUGT75A is achieved mainly by promotion of cell elongation.An elite haplotype of OsUGT75A associated with increased shoot length was identified among indica rice accessions.OsUGT75A acts to increase seedling emergence under deep-sowing conditions.展开更多
The jasmonate ZIM-domain(JAZ)family of proteins serves as co-receptors and transcriptional repressors of jasmonic acid(JA)in plants.Their functional diversity and multiple roles make them important components of the r...The jasmonate ZIM-domain(JAZ)family of proteins serves as co-receptors and transcriptional repressors of jasmonic acid(JA)in plants.Their functional diversity and multiple roles make them important components of the regulatory network of JA and other hormonal signaling pathways.In this review,we provide an overview of the latest findings on JAZ family proteins and emphasize their roles in plant growth and development,and response to biotic and abiotic stress,along with their underlying mechanisms.Moreover,existing challenges and future applications are outlined with the aim of offering a reference for further research on JAZ proteins in the context of plant physiology.展开更多
Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germinat...Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germination was identified in a genome-wide association study.The candidate gene JASMONATE ZIM-DOMAIN 5(OsJAZ5)of the QTL was verified that positively regulates seed germination.OsJAZ5 regulation of seed germination involves an OsABI3-mediated abscisic acid pathway.Overexpression of OsJAZ5 facilitated seed germination.The application of OsJAZ5 might be useful for increasing seed germination for rice direct seeding.展开更多
Direct seeding has been increasingly adopted under both rainfed and irrigated conditions due to its low cost and convenience.Not only to suppress weed germination and reduce the cost of manual weeding and/or dependenc...Direct seeding has been increasingly adopted under both rainfed and irrigated conditions due to its low cost and convenience.Not only to suppress weed germination and reduce the cost of manual weeding and/or dependence on herbicides,but also to control pests and reduce pesticide usage,farmers usually flood the direct-seeded field,resulting in inadequate seed germination and seedling establishment.展开更多
Independent light propagation through one or multiple modes is commonly considered as a basic demand for mode manipulation in few-mode fiber(FMF)-or multimode fiber(MMF)-based optical systems such as transmission link...Independent light propagation through one or multiple modes is commonly considered as a basic demand for mode manipulation in few-mode fiber(FMF)-or multimode fiber(MMF)-based optical systems such as transmission links,optical fiber lasers,or distributed optical fiber sensors.However,the insertion of doped-fiber amplifiers always kills the entire effort by inducing significant modal crosstalk.In this paper,we propose the design of doped-fiber amplifiers in FMF-based systems adopting identical multiple-ring-core(MRC)index profiles for both passive and doped fibers to achieve low modal crosstalk.We develop the direct-glass-transition(DGT)modified chemical vapor deposition(MCVD)processing for precise fabrication of few-mode erbium-doped fibers(FM-EDFs)with MRC profiles of both refractive index and erbium-ion doping distribution.Then,a few-mode erbium-doped-fiber amplifier(FM-EDFA)with a maximum gain of 26.08 dB and differential modal gain(DMG)of 2.3 dB is realized based on fabricated FM-EDF matched with a transmission FMF supporting four linearly polarized(LP)modes.With the insertion of the FM-EDFA,60+60 km simultaneous LP_(01)∕LP_(11)∕LP_(21)∕LP_(02)transmission without inter-modal multiple-input multiple-output digital signal processing(MIMO-DSP)is successfully demonstrated.The proposed design of low-modal-crosstalk doped-fiber amplifiers provides,to our knowledge,new insights into mode manipulation methods in various applications.展开更多
Multi-mode fiber(MMF)links are expected to greatly enhance capacity to cope with rapidly increasing data traffic in optical short-reach systems and networks.Recently,mode division multiplexing(MDM)over MMF has been pr...Multi-mode fiber(MMF)links are expected to greatly enhance capacity to cope with rapidly increasing data traffic in optical short-reach systems and networks.Recently,mode division multiplexing(MDM)over MMF has been proposed,in which different modes in MMF are utilized as spatial channels for data transmission.Stronglycoupled MDM techniques utilizing coherent detection and multiplex-input-multiplex-output(MIMO)digital signal processing(DSP)are complex and expensive for shortreach transmission.So the weakly-coupled approach by significantly suppressing mode coupling in the fiber and optical components has been proposed.In this way,the signals in each mode can be independently transmitted and received using conventional intensity modulation and direct detection(IM-DD).In this paper,we elaborate the key technologies to realize weakly-coupled MDM transmission over conventional MMF,including mode characteristic in MMF and weakly-coupled mode multiplexer/ demultiplexer(MUX/DEMUX).We also present the upto-date experimental results for weakly-coupled MDM transmission over conventional OM3 MMF.We show that weakly-coupled MDM scheme is promising for high-speed optical interconnections and bandwidth upgrade of already-deployed MMF links.展开更多
基金supported by the Hainan Province Science and Technology Special Fund,China(ZDYF2023XDNY086)the Project of Sanya Yazhou Bay Science and Technology City,China(SCKJ-JYRC-2022-87)+2 种基金the Natural Science Foundation of Guangdong Province,China(2023A1515012052 and 2023A1515012092)the Guangzhou Science and Technology Plan Project,China(2023A04J1452 and 2023A04J0749)the Double First-class Discipline Promotion Project,China(2021B10564001).
文摘Seed vigor is a crucial trait for the direct seeding of rice.Here we examined the genetic regulation of seed vigor traits in rice,including germination index(GI)and germination potential(GP),using a genome-wide association study approach.One major quantitative trait locus,qGI6/qGP6,was identified simultaneously for both GI and GP.The candidate gene encoding the cytochrome c oxidase subunit 5B(OsCOX5B)was validated for qGI6/qGP6.The disruption of OsCOX5B caused the vigor traits to be significantly lower in Oscox5b mutants than in the japonica Nipponbare wild type(WT).Gene co-expression analysis revealed that OsCOX5B influences seed vigor mainly by modulating the tricarboxylic acid cycle process.The glucose levels were significantly higher while the pyruvic acid and adenosine triphosphate levels were significantly lower in Oscox5b mutants than in WT during seed germination.The elite haplotype of OsCOX5B facilitates seed vigor by increasing its expression during seed germination.Thus,we propose that OsCOX5B is a potential target for the breeding of rice varieties with enhanced seed vigor for direct seeding.
基金supported by the Key-Area Research and Development Program of Guangdong Province,China(2022B0202060006)the National Natural Science Foundation of China(32201838,32272157,32172052,and 31971995)+2 种基金the Natural Science Foundation of Guangdong Province,China(2023A1515012052)the Project of Sanya Yazhou Bay Science and Technology City,China(SCKJJYRC-2022-87)the Double First-class Discipline Promotion Project,China(2021B10564001)
文摘Seed aging tolerance during storage is generally an important trait for crop production, yet the role of small auxin-up RNA genes in conferring seed aging tolerance is largely unknown in rice. In this study, one small auxin-up RNA gene, OsSAUR33, was found to be involved in the regulation of seed aging tolerance in rice. The expression of OsSAUR33 was significantly induced in aged seeds compared with unaged seeds during the seed germination phase. Accordingly, the disruption of OsSAUR33 significantly reduced seed vigor compared to the wild type(WT) in response to natural storage or artificial aging treatments. The rice OsSAUR33 gene promotes the vigor of aged seeds by enhancing their reactive oxygen species(ROS) level during seed germination, and the accumulation of ROS was significantly delayed in the aged seeds of Ossaur33 mutants in comparison with WT during seed germination. Hydrogen peroxide(H_(2)O_(2)) treatments promoted the vigor of aged seeds in various rice varieties. Our results provide timely theoretical and technical insights for the trait improvement of seed aging tolerance in rice.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2022B0202060006)the Natural Science Foundation of Guangdong Province(2023A1515012052,2023A1515012092)+2 种基金the Science and Technology Project of Guangzhou(2023A04J0749,2023A04J1452)the Special Fund for Student Cultivation of Scientific and Technological Innovation of Guangdong Province(pdjh2021b0084)the Double First-Class Discipline Promotion Project of South China Agricultural University(2021B10564001).
文摘Poor seedling emergence is a challenge for direct seeding of rice under deep-sowing field conditions.Here we reveal that UDP-glucosyltransferase OsUGT75A promotes rice seedling emergence under deepsowing conditions by increasing shoot length.Expression of OsUGT75A was higher in the middle regions of the shoot and in shoots under deep-sowing conditions.Levels of free abscisic acid(ABA)and jasmonates(JA)were higher in shoots of OsUGT75A mutants than in those of wild-type plants,and OsUGT75A mutants were more sensitive to ABA and JA treatments.Reduced shoot length was attributed to higher ABA INSENSITIVE 3(OsABI3)expression and lower JASMONATE-ZIM domain protein(OsJAZ)expression in shoots.Shoot extension by OsUGT75A is achieved mainly by promotion of cell elongation.An elite haplotype of OsUGT75A associated with increased shoot length was identified among indica rice accessions.OsUGT75A acts to increase seedling emergence under deep-sowing conditions.
基金funded by the National Natural Science Foundation of China (32372156,32201838,32272157)the Natural Science Foundation of Guangdong Province (2024A1515011084,2023A1515012052,2023A1515012092)the Science and Technology Project of Guangzhou (2023A04J0749,2023A04J1452).
文摘The jasmonate ZIM-domain(JAZ)family of proteins serves as co-receptors and transcriptional repressors of jasmonic acid(JA)in plants.Their functional diversity and multiple roles make them important components of the regulatory network of JA and other hormonal signaling pathways.In this review,we provide an overview of the latest findings on JAZ family proteins and emphasize their roles in plant growth and development,and response to biotic and abiotic stress,along with their underlying mechanisms.Moreover,existing challenges and future applications are outlined with the aim of offering a reference for further research on JAZ proteins in the context of plant physiology.
基金supported by the Hainan Province Science and Technology Special Fund,China(ZDYF2023XDNY086)the Project of Sanya Yazhou Bay Science and Technology City,China(SCKJ-JYRC-2022-87)+1 种基金the Natural Science Foundation of Guangdong Province,China(2023A1515012052,2023A1515012092)the Science and Technology Project of Guangzhou,China(2023A04J0749,2023A04J1452).
文摘Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germination was identified in a genome-wide association study.The candidate gene JASMONATE ZIM-DOMAIN 5(OsJAZ5)of the QTL was verified that positively regulates seed germination.OsJAZ5 regulation of seed germination involves an OsABI3-mediated abscisic acid pathway.Overexpression of OsJAZ5 facilitated seed germination.The application of OsJAZ5 might be useful for increasing seed germination for rice direct seeding.
基金supported by National Natural Science Foundation of China(32372156,32172052,32272157,and 32201838)the Natural Science Foundation of Guangdong Province(2023A1515012092 and 2023A1515012052)。
文摘Direct seeding has been increasingly adopted under both rainfed and irrigated conditions due to its low cost and convenience.Not only to suppress weed germination and reduce the cost of manual weeding and/or dependence on herbicides,but also to control pests and reduce pesticide usage,farmers usually flood the direct-seeded field,resulting in inadequate seed germination and seedling establishment.
基金Pengcheng Zili Project(PCL2023A04)National Natural Science Foundation of China(62101009,U20A20160)。
文摘Independent light propagation through one or multiple modes is commonly considered as a basic demand for mode manipulation in few-mode fiber(FMF)-or multimode fiber(MMF)-based optical systems such as transmission links,optical fiber lasers,or distributed optical fiber sensors.However,the insertion of doped-fiber amplifiers always kills the entire effort by inducing significant modal crosstalk.In this paper,we propose the design of doped-fiber amplifiers in FMF-based systems adopting identical multiple-ring-core(MRC)index profiles for both passive and doped fibers to achieve low modal crosstalk.We develop the direct-glass-transition(DGT)modified chemical vapor deposition(MCVD)processing for precise fabrication of few-mode erbium-doped fibers(FM-EDFs)with MRC profiles of both refractive index and erbium-ion doping distribution.Then,a few-mode erbium-doped-fiber amplifier(FM-EDFA)with a maximum gain of 26.08 dB and differential modal gain(DMG)of 2.3 dB is realized based on fabricated FM-EDF matched with a transmission FMF supporting four linearly polarized(LP)modes.With the insertion of the FM-EDFA,60+60 km simultaneous LP_(01)∕LP_(11)∕LP_(21)∕LP_(02)transmission without inter-modal multiple-input multiple-output digital signal processing(MIMO-DSP)is successfully demonstrated.The proposed design of low-modal-crosstalk doped-fiber amplifiers provides,to our knowledge,new insights into mode manipulation methods in various applications.
基金the National Natural Science Foundation of China(Grant Nos.61771024,61627814,61505002,61690194 and 61605004)Fundamental Research Project of Shenzhen Science and Technology Foundation(Nos.JCYJ 20170412153729436 and 20170307172513653).
文摘Multi-mode fiber(MMF)links are expected to greatly enhance capacity to cope with rapidly increasing data traffic in optical short-reach systems and networks.Recently,mode division multiplexing(MDM)over MMF has been proposed,in which different modes in MMF are utilized as spatial channels for data transmission.Stronglycoupled MDM techniques utilizing coherent detection and multiplex-input-multiplex-output(MIMO)digital signal processing(DSP)are complex and expensive for shortreach transmission.So the weakly-coupled approach by significantly suppressing mode coupling in the fiber and optical components has been proposed.In this way,the signals in each mode can be independently transmitted and received using conventional intensity modulation and direct detection(IM-DD).In this paper,we elaborate the key technologies to realize weakly-coupled MDM transmission over conventional MMF,including mode characteristic in MMF and weakly-coupled mode multiplexer/ demultiplexer(MUX/DEMUX).We also present the upto-date experimental results for weakly-coupled MDM transmission over conventional OM3 MMF.We show that weakly-coupled MDM scheme is promising for high-speed optical interconnections and bandwidth upgrade of already-deployed MMF links.