Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturin...Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.展开更多
It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites incl...It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.展开更多
In this paper we present a review of mineral systems in northern Xinjiang, NW China, focussing on the Tianshan, West and East Junggar and Altay orogenic belts, all of which are part of the greater Central Asian Orogen...In this paper we present a review of mineral systems in northern Xinjiang, NW China, focussing on the Tianshan, West and East Junggar and Altay orogenic belts, all of which are part of the greater Central Asian Orogenic Belt (CAOB). The CAOB is a complex collage of ancient microcontinents, island arcs, oceanic plateaux and oceanic plates, which were amalgamated and accreted in Early Palaeozoic to Early Permian times. The establishment of the CAOB collage was followed by strike-slip movements and affected by intraplate magmatism, linked to mantle plume activity, best exemplified by the 250 Ma Siberian Traps and the 280 Ma Tarim event. In northern Xinjiang, there ale numerous and economically important mineral systems. In this contribution we describe a selection of representative mineral deposits, including subduction-related porphyry and epithermal deposits, volcanogenic massive sulphides and skarn systems. Shear zone-hosted Au lodes may have first formed as intrusion-related and subsequently re-worked during strike-slip deformation. Intraplate magmatism led to the emplacement of concentrically zoned (Alaskan-style) mafic-ultramafic intrusions, many of which host orthomagmatic sulphide deposits. A huge belt of pegmatites in the Altay orogen, locally hosts world-class rare metal deposits. Roll-front,展开更多
Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain ...Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain chemically stable in aqueous electrolyte and provide a robust structure for the storage of Zn2+.Here,we report on H11Al2V6O23.2@graphene(HAVO@G)with exceptionally large layer spacing of(001)plane(13.36?).The graphene-wrapped structure can keep the structure stable during discharge/charge process,thereby promoting the inhibition of the dissolution of elements in the aqueous electrolyte.While used as cathode for AZIBs,HAVO@G electrode delivers ideal rate performance(reversible capacity of 305.4,276.6,230.0,201.7,180.6 mAh g?1 at current densities between 1 and 10 A g?1).Remarkably,the electrode exhibits excellent and stable cycling stability even at a high loading mass of^15.7 mg cm?2,with an ideal reversible capacity of 131.7 mAh g?1 after 400 cycles at 2 A g?1.展开更多
The Huoshenmiao δeposit is Mo skarn δeposit, located in the western part of the Luanchuan ore δistrict.Mineralization process can be δivided into a skarn and a quartz-sulfide episodes with six stages: prograde(I),...The Huoshenmiao δeposit is Mo skarn δeposit, located in the western part of the Luanchuan ore δistrict.Mineralization process can be δivided into a skarn and a quartz-sulfide episodes with six stages: prograde(I), retrograde(II), quartz-K-feldspar(III), quartz-molybdenite(IV), quartz-pyrite(V), and quartzcalcite(VI). A combined study of geochronology, fluid inclusion(FI), and stable isotopes was conducted to constrain the mineralization age, source of ore materials, as well as the origin and evolution of the ore-forming fluids. Molybdenite Ree Os δating indicates that the δeposit was formed in the Late Jurassic(~145 Ma). The δ^(34)S values of sulfides range from 3.0‰ to 7.1‰, implying that the ore materials in the δeposit are magmatic in origin. Three types and six subtypes of FIs are δistinguished, namely, aqueous two-phase(W_1-and W_2-type), δaughter mineral-bearing multiphase(S_1-and S_2-type), and CO_2-bearing three-phase(C_1-and C_2-type). In stages I and II, the W_1-type FIs δisplay homogenization temperatures(Th) from 496°C to >600°C, with salinities of 14.9-18.3 wt.% NaCl eqv. The FIs in stages III, IV and early stage V composed of coeval S-, C-and W-types, respectively homogenize at similar Th, suggesting the occurrence of boiling. The W1-type FIs in late stage V and stage VI, yield Th of 102-406°C and salinities of 0-4.7 wt.% NaCl eqv. The δD_(H_2O)and δ^(18) O(H_2O)values of the ore-forming fluids in quartz-sulfide episode vary from-112‰ to-76‰, and 11.0‰ to 1.0‰, respectively. All these above observations reveal that the early ore-forming fluids are magmatic in origin, and characterized by high temperature and moderate to high salinity, and gradually evolve to low temperature, low salinity meteoric water. The Huoshenmiao Mo δeposit is associated with the magmatism event induced by the protracted subduction of the Izanagi plate beneath the eastern China continent. The δecrease in temperature, salinity and f(O_2), as well as change of p H δue to boiling and fluid-rock interaction, are the main factors controlling Mo δeposition.展开更多
Carbon supported Pt-Co alloys are among the most promising electrocatalysts towards oxygen reduction reaction(ORR)for the application in low temperature fuel cells and beyond,thus their facile and green synthesis is h...Carbon supported Pt-Co alloys are among the most promising electrocatalysts towards oxygen reduction reaction(ORR)for the application in low temperature fuel cells and beyond,thus their facile and green synthesis is highly demanded.Herein we initially report an alternate aqueous phase one-pot synthesis of such catalysts(containing nominally ca.20 wt.%Pt)based on dimethylamine borane(DMAB)reduction.The as-obtained electrocatalyst(denoted as Pt3Co/C-DMAB)is compared with the ones obtained by NaBH4 and N2H4·H2O reduction(denoted as Pt3Co/C-NaBH4 and Pt3Co/C-N2H4·H2O,respectively)as well as a commercial Pt/C,in terms of the structure and electrocatalytic property.It turns out that Pt3Co/C-DMAB exhibits the highest ORR performance among all the tested samples in an O2-saturated 0.1 mol/L HClO4,with the mass activity(specific activity)ca.4(6)times as large as that for Pt/C.After 10000 cycles of the accelerated degradation test,the half-wave potential for ORR on Pt3Co/C-DMAB decreases only by 4 mV,in contrast to 24 mV for that on Pt/C.Pt3Co/C-NaBH4 or Pt3Co/C-N2H4·H2O shows a specific activity comparable to that for Pt3Co/C-DMAB,but a mass activity similar to that for Pt/C.ICP-AES,TEM,XRD and XPS characterizations indicate that Pt3Co nanoparticles are well-dispersed and alloyed with a mean particle size of ca.3.4±0.4 nm,contributing to the prominent electrocatalytic performance of Pt3Co/C-DMAB.This simple aqueous synthetic route may provide an alternate opportunity for developing efficient practical electrocatalysts for ORR.展开更多
In order to meet the clinical requirements of spine surgery,this paper proposed the exploratory research of computer-aided design and selective laser melting(SLM)fabrication of a bionic porous titanium spine implant.T...In order to meet the clinical requirements of spine surgery,this paper proposed the exploratory research of computer-aided design and selective laser melting(SLM)fabrication of a bionic porous titanium spine implant.The structural design of the spinal implant is based on CT scanning data to ensure correct matching,and the mechanical properties of the implant are verified by simulation analysis and laser selective melting experiment.The surface roughness of the spinal implant manufactured by SLM without post-processing is Ra 15μm,and the implant is precisely jointed with the photosensitive resin model of the upper and lower spine.The surface micro-hardness of the implant is HV 373,tensile strengthσ_(b)=1238.7 MPa,yield strengthσ_(0.2)=1043.9 MPa,the elongation is 6.43%,and the compressive strength of porous structure under 84.60%porosity is 184.09 MPa,which can meet the requirements of the reconstruction of stable spines.Compared with the traditional implant and intervertebral fusion cage,the bionic porous spinal implant has the advantages of accurate fit,porous bionic structure and recovery of patients,and the ion release experiment proved that implants manufactured by SLM are more suitable for clinical application after certain treatments.The elastic modulus of the sample is improved after heat treatment,mainly because the microstructure of the sample changes fromα’phase toα+βdual-phase after heat treatment.In addition,the design of high-quality bionic porous spinal implants still needs to be optimized for the actual needs of doctors.展开更多
Photocatalytic water oxidation for O2evolution is known as a bottle neck in water splitting.Various strategies have been conducted to keep the energetics of photogenerated holes or to create more holes in the bulk to ...Photocatalytic water oxidation for O2evolution is known as a bottle neck in water splitting.Various strategies have been conducted to keep the energetics of photogenerated holes or to create more holes in the bulk to reach the surface for efficient photocatalytic water oxidation.Our previous study demonstrated the effectiveness of interstitial boron doping in improving photocatalytic water oxidation by lowering the valence band maximum of TiO2with a concentration gradient of boron.In this study,homogeneous doping of interstitial boron was realized in a TiO2shell with mixed anatase/rutile phases that was produced by the gaseous hydrolysis of the surface layer of TiB2crystals in a moist argon atmosphere.Consequently,the homogeneous doping and lowered valence band maximum improved the energetics of holes for efficient photocatalytic water oxidation.展开更多
In this paper,a novel micromixer with complex 3D-shape inner units was put forward and fabricated by metal Additive Manufacturing(AM).The design of the micromixer combined the constraints of selective laser melting te...In this paper,a novel micromixer with complex 3D-shape inner units was put forward and fabricated by metal Additive Manufacturing(AM).The design of the micromixer combined the constraints of selective laser melting technology and the factors to improve mixing efficiency.Villermaux-Dushman reaction system and Compute Fluid Design(CFD)simulation were conducted to investigate the performance and the mechanism of this novel micromixer to improve mixing efficiency.The research found that the best mixing efficiency of this novel micromixer could be gained when the inner units divided fluid into five pieces with a uniform volume.Compared with a conventional micromixer without obstacle in the channel,the micromixer designed in this research achieved higher mixing efficiency and reduce the pressure drop by 10.34%.The mixing behaviour in this novel micromixer was discussed,which mainly contains two types:collisions and swirls.Via collisions,the fluid micro masses would hit each other directly,which broke the boundaries of micro masses and promoted the interchange of species in the whole flow field.In swirls,the fluid micro masses were drawn into thin and long slices,which increased the size of the contact area and enhanced molecule diffusion.Finally,the application scheme of this novel micromixer was briefly discussed.展开更多
Transverse vibration and stability analysis of circular plate subjected to follower force and thermal load are analyzed.Based on the thin plate theory in involving the variable temperature,the differential equation of...Transverse vibration and stability analysis of circular plate subjected to follower force and thermal load are analyzed.Based on the thin plate theory in involving the variable temperature,the differential equation of transverse vibration for the axisymmetric circular plate subjected to follower force and thermal load is established.Then,the differential equation of vibration and corresponding boundary conditions are discretized by the differential quadrature method.Meanwhile,the generalized eigenvalue under three different boundary conditions are calculated.In this case,the change curve of the first order dimensionless complex frequency of the circular plate subjected to the follower force in the different conditions with the variable temperature coefficient and temperature load is analyzed.The stability and corresponding critical loads of the circular plate subjected to follower force and thermal load with simply supported edge,clamped edge and free edge are discussed.The results provide theoretical basis for improving the dynamic stability of the circular plate.展开更多
Ground vibration accelerations caused by the collapse of blasting demolition of urban viaducts was recorded in ordered to analyze the engineering characteristics and effects on the surrounding buildings. Through the a...Ground vibration accelerations caused by the collapse of blasting demolition of urban viaducts was recorded in ordered to analyze the engineering characteristics and effects on the surrounding buildings. Through the analysis of peak ground acceleration,peak frequency,duration and response spectra of the recorded vibrations in different acceleration arrays,some conclusions are drawn: the peak ground acceleration decreases with increasing distance, and the amplitude of vertical component is higher than that of the horizontal components,especially in near source region. The peak frequency of ground acceleration decreases with distance,and in near source region,it is larger than the natural frequency of the surrounding buildings,and thus it will not have much effect on the buildings. The duration of ground acceleration caused by collapse is longer than that caused by blasting itself. The vertical response spectrum is the largest of the three components,and it decreases rapidly in the near source region of about 30 m,but beyond that the distance decreases slowly.The horizontal components are smaller than the local seismic design spectrum,while the vertical component for natural period under 0.15 s exceeds the seismic design spectrum,but the natural periods of general buildings are usually beyond that domain,so this will not have much effect on the nearby buildings.展开更多
[Objectives] To study the temporomandibular disorder(TMD) in male candidates of conscription age. [Methods] The TMD was surveyed in 2 152 young males who participated in 2015, 2016 and 2017 physical examinations for c...[Objectives] To study the temporomandibular disorder(TMD) in male candidates of conscription age. [Methods] The TMD was surveyed in 2 152 young males who participated in 2015, 2016 and 2017 physical examinations for conscription in Qingzhou City, Weifang of Shandong Province. [Results] Cases with previous positive symptoms and with positive clinical signs respectively accounted for 5.02% and 18.91% of the whole respondents. Among the three major symptoms, the occurrence of clicking, accounting for 17.7% of the total case amount, ranked the first; among 407 cases with positive clinical signs, the top two symptoms were simple clicking(50.86%) and clicking with abnormal mandibular movement(36.85%). [Conclusions] TMD occurs in male candidates of conscription age with a relatively high occurrence, but most cases are mild with clicking as the major symptom.展开更多
As a key technology in the advanced manufacturing field,additive manufacturing(AM)technology introduces a new design concept that is guided by function rather than by manufacturing,promoting the rapid development of t...As a key technology in the advanced manufacturing field,additive manufacturing(AM)technology introduces a new design concept that is guided by function rather than by manufacturing,promoting the rapid development of the high-tech industry.However,as-fabricated parts have an unstable performance in quality due to rapid heating and rapid cooling induced by energy source.Therefore,quality control of the manufacturing process,which is mainly studied by numerical simulation,is one of the most active research topics in the AM field.In the view of increasing attention in AM technology,this special issue contributes to highlighting recent challenges and developments of AM-based design and simulation,with focuses on microstructure stability and evolution,multi-physics problems and process enhancements.展开更多
The 2015 Geoscience Frontiers Annual Convention was held in Beijing, China during October 29, 2015 hosted by China University of Geosciences, Beijing (Fig. 1). This convention assembled earth scientists from 5 count...The 2015 Geoscience Frontiers Annual Convention was held in Beijing, China during October 29, 2015 hosted by China University of Geosciences, Beijing (Fig. 1). This convention assembled earth scientists from 5 countries, including Australia (Prof. Franco Pirajno), China (several delegates), Germany (Prof. Daniel Harlov), Italy (Prof. Carlo Doglioni), Norway (Dr. Mathew Domeier), South Korea (Prof. S. Kwon) and United States (Prof. Richard Goldfarb), along with representatives from Elsevier (Beijing).展开更多
The 2016 Geoscience Frontiers Annual Convention was held in Beijing,China on October 14,2015 hosted by China University of Geosciences,Beijing(Fig.1).This convention assembled earth scientists from six countries,inc...The 2016 Geoscience Frontiers Annual Convention was held in Beijing,China on October 14,2015 hosted by China University of Geosciences,Beijing(Fig.1).This convention assembled earth scientists from six countries,including Australia(Dr.Christopher Spencer),Italy(Prof.Emilio Saccani),India(Prof.G.Parthasarathy and Prof.M.Jayananda),Japan(Prof.Masaki Yoshida),UK(Dr.Nick Roberts),China,and also representative from Elsevier(Beijing).展开更多
Determining appropriate process parameters in large-scale laser powder bed fusion(LPBF)additive manufacturing pose formidable challenges that necessitate advanced approaches to minimize trial-and-error during experime...Determining appropriate process parameters in large-scale laser powder bed fusion(LPBF)additive manufacturing pose formidable challenges that necessitate advanced approaches to minimize trial-and-error during experimentation.This work proposed a data-driven approach based on stacking ensemble learning to predict the mechanical properties of Ti6Al4V alloy fabricated by large-scale LPBF for the first time.This method can adapt to the complexity of large-scale LPBF data distribution and exhibits a more generalized predictive capability compared to base models.Specifically,the stacking model utilized artificial neural network(ANN),gradient boosting regressor,kernel ridge regression,and elastic net as base models,with the Lasso model serving as the meta-model.Bayesian optimization and cross-validation were utilized for model optimization and training based on a limited data set,resulting in higher predictive accuracy compared to traditional artificial neural network model.The statistical analysis of the ANN and stacking models indicates that the stacking model exhibits superior performance on the test set,with a coefficient of determination value of 0.944,mean absolute percentage error of 2.51%,and root mean squared error of 27.64,surpassing that of the ANN model.All statistical metrics demonstrate superiority over those obtained from the ANN model.These results confirm that by integrating the base models,the stacking model exhibits superior predictive stability compared to individual base models alone,thereby providing a reliable assessment approach for predicting the mechanical properties of metal parts fabricated by the LPBF process.展开更多
In this work,by simplifying the nanopores of porous C/C preform with single-walled carbon nanotubes(SWCNT)or double-walled carbon nanotubes(DWCNTs),the infiltration of liquid Si in the SWCNTs and DWCNTs was studied by...In this work,by simplifying the nanopores of porous C/C preform with single-walled carbon nanotubes(SWCNT)or double-walled carbon nanotubes(DWCNTs),the infiltration of liquid Si in the SWCNTs and DWCNTs was studied by molecular dynamics(MD)simulations.As a result,a quantitative relationship between tube diameter and liquid Si infiltration rate was established,which has been successfully ap-plied to reproduce the available experiment result.The obtained relationship indicates that the capillary infiltration of liquid Si at the nanoscale still conforms to the classic Lucas-Washburn law,however,the liquid Si infiltration quickly stops in small tubes with a diameter of less than 3 nm due to an obvious contraction of the tube wall.This work may provide theoretical guidance for pore structure optimization of porous C/C preform to fabricate high-density C/SiC composites.展开更多
Melon-derived carbon nitride photocatalysts are a kind of star layered materials applied in solar energy conversion.With in-planeπorbitals of the heptazine subunits and their overlap along the melon chains being the ...Melon-derived carbon nitride photocatalysts are a kind of star layered materials applied in solar energy conversion.With in-planeπorbitals of the heptazine subunits and their overlap along the melon chains being the most distinctive feature,the condition of melon chains is of great importance for the atomic and energy band structures of carbon nitride photocatalysts as well as their photo-activities.In principle,fragmentized melon chains in practical carbon nitride would lead to unfavorable structure disorder both in longitudinal and vertical directions,thus inhibiting the efficient transfer for photo-induced electrons and holes,respectively.Here,with a facile regrowth approach,that is to treat carbon nitride under the atmosphere containing C/N species,the melon chains in carbon nitride were experimentally lengthened,which was reflected by the regularly fraction variation of different nitrogen species derived from X-ray photoelectron spectroscopy(XPS)analysis.The prolonged melon chains led to dramatically improved in-plane structure order and boosted transfer of photo-induced electrons and holes,which were confirmed by the spontaneous photo-deposition of oxidants and reductants.The combination of this regrowth approach with homogenously distributed nitrogen vacancies resulted in much enhanced visible-light-responsive photoactivities.Besides,control experiments using nitrogen-vacancy-free carbon nitride and different C/N-contained precursors showed the compatibility as well as the critical factors for the lengthening effects of the regrowth approach.We hope that the facile but efficient regrowth approach could be widely adopted in melon-derived carbon nitride photocatalysts used for various applications.展开更多
Photocatalytic degradation of volatile organic compounds(VOCs)is a significant applying aspect of pho-tocatalysis.Both the modulation of photocatalysts and the rational dispersion of them on supports are key for solar...Photocatalytic degradation of volatile organic compounds(VOCs)is a significant applying aspect of pho-tocatalysis.Both the modulation of photocatalysts and the rational dispersion of them on supports are key for solar-driven VOC degradation.Conventional batch-type photoreactors have low efficiency while continuous-flow photoreactors suffer from the problem of incomplete removal of VOCs.Herein,aiming for continuous and complete degradation of toluene gas as the target contaminant,continuous-flow pho-tocatalytic degradation reactors were made by adhering the vanadium and nitrogen codoped TiO_(2)on honeycomb ceramics(V/N-TiO_(2)@HC)by a simple sol-gel method.In such a reactor,the rich ordered pores in the HC accelerate mass transport of toluene,and the introduction of V/N dopants narrows the bandgap and widens the light absorption range of TiO_(2),together resulting in continuous and nearly-complete pho-tocatalytic degradation of toluene.The unique and stable structure of HC allows the photocatalysts to be reused.The degradation rate of toluene gas can reach 97.8%,and after 24 rounds of photocatalytic degra-dation,there is still a degradation rate of 96.7%.The impacts of loading times and gaseous flow rate on the photocatalytic performance of V/N-TiO_(2)@HC are studied in detail.Our study provides a practical so-lution for the continuous and complete photocatalytic degradation of VOCs and opens a new application field for HC.展开更多
CdS nanospheres were grown on indium tin oxide(ITO)substrate using a hydrothermal method.The crystal structure,morphology and electronic structure of the samples synthesized were characterized in detail.The results co...CdS nanospheres were grown on indium tin oxide(ITO)substrate using a hydrothermal method.The crystal structure,morphology and electronic structure of the samples synthesized were characterized in detail.The results confirm that the crystallinity,size,crystal defects of the CdS nanospheres and the film thickness of CdS photoelectrodes can be tuned by varying the precursor Cd2+concentration.Combined with charge transfer dynamics analysis,it can be found that proper particle size and film thickness,as well as fewer defects,will result in better charge separation efficiency of the prepared CdS/ITO photoelectrodes,thereby exhibiting better photoelectrochemical performance for water splitting.The optimized CdS/ITO photoelectrode synthesized with a Cd2+concentration of 0.14 mol⋅L1 gave a photocurrent density of 5.10 mA⋅cm^(-2)at potential of 1.23 V versus the reversible hydrogen electrode(RHE),under a simulated solar illumination of 100 mW⋅cm^(-2).展开更多
基金National Natural Science Foundation of China (52305358)the Fundamental Research Funds for the Central Universities (2023ZYGXZR061)+3 种基金Guangdong Basic and Applied Basic Research Foundation (2022A1515010304)Science and Technology Program of Guangzhou (202201010362)Young Elite Scientists Sponsorship Program by CAST . (2023QNRC001)Young Talent Support Project of Guangzhou (QT-2023-001)
文摘Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.
基金supported by the Guangdong Basic and Applied Basic Research Foundation (2020B1515120013,2022B1515120066)National Natural Science Foundation of China (Nos.U2001218, 51875215)+1 种基金Key-Area Research and Development Program of Guangdong Province (2020B090923001)Special Support Foundation of Guangdong Province (No.2019TQ05Z110)。
文摘It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.
基金funded by"State Key Laboratory of Geological Processes and Mineral Resources(GPMR200624),China University of Geosciences"
文摘In this paper we present a review of mineral systems in northern Xinjiang, NW China, focussing on the Tianshan, West and East Junggar and Altay orogenic belts, all of which are part of the greater Central Asian Orogenic Belt (CAOB). The CAOB is a complex collage of ancient microcontinents, island arcs, oceanic plateaux and oceanic plates, which were amalgamated and accreted in Early Palaeozoic to Early Permian times. The establishment of the CAOB collage was followed by strike-slip movements and affected by intraplate magmatism, linked to mantle plume activity, best exemplified by the 250 Ma Siberian Traps and the 280 Ma Tarim event. In northern Xinjiang, there ale numerous and economically important mineral systems. In this contribution we describe a selection of representative mineral deposits, including subduction-related porphyry and epithermal deposits, volcanogenic massive sulphides and skarn systems. Shear zone-hosted Au lodes may have first formed as intrusion-related and subsequently re-worked during strike-slip deformation. Intraplate magmatism led to the emplacement of concentrically zoned (Alaskan-style) mafic-ultramafic intrusions, many of which host orthomagmatic sulphide deposits. A huge belt of pegmatites in the Altay orogen, locally hosts world-class rare metal deposits. Roll-front,
基金supported by National Natural Science Foundation of China(Nos.51972346,51932011,51802356,and 51872334)Innovation-Driven Project of Central South University(No.2018CX004).
文摘Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain chemically stable in aqueous electrolyte and provide a robust structure for the storage of Zn2+.Here,we report on H11Al2V6O23.2@graphene(HAVO@G)with exceptionally large layer spacing of(001)plane(13.36?).The graphene-wrapped structure can keep the structure stable during discharge/charge process,thereby promoting the inhibition of the dissolution of elements in the aqueous electrolyte.While used as cathode for AZIBs,HAVO@G electrode delivers ideal rate performance(reversible capacity of 305.4,276.6,230.0,201.7,180.6 mAh g?1 at current densities between 1 and 10 A g?1).Remarkably,the electrode exhibits excellent and stable cycling stability even at a high loading mass of^15.7 mg cm?2,with an ideal reversible capacity of 131.7 mAh g?1 after 400 cycles at 2 A g?1.
基金funded by the National Key R&D Plan (Nos. 2017YFC0601403 and 2016YFC0600106)the National Natural Science Foundation of China (No. 41272110)the basic research program of the First Institute of Oceanography (No. 2015T02)
文摘The Huoshenmiao δeposit is Mo skarn δeposit, located in the western part of the Luanchuan ore δistrict.Mineralization process can be δivided into a skarn and a quartz-sulfide episodes with six stages: prograde(I), retrograde(II), quartz-K-feldspar(III), quartz-molybdenite(IV), quartz-pyrite(V), and quartzcalcite(VI). A combined study of geochronology, fluid inclusion(FI), and stable isotopes was conducted to constrain the mineralization age, source of ore materials, as well as the origin and evolution of the ore-forming fluids. Molybdenite Ree Os δating indicates that the δeposit was formed in the Late Jurassic(~145 Ma). The δ^(34)S values of sulfides range from 3.0‰ to 7.1‰, implying that the ore materials in the δeposit are magmatic in origin. Three types and six subtypes of FIs are δistinguished, namely, aqueous two-phase(W_1-and W_2-type), δaughter mineral-bearing multiphase(S_1-and S_2-type), and CO_2-bearing three-phase(C_1-and C_2-type). In stages I and II, the W_1-type FIs δisplay homogenization temperatures(Th) from 496°C to >600°C, with salinities of 14.9-18.3 wt.% NaCl eqv. The FIs in stages III, IV and early stage V composed of coeval S-, C-and W-types, respectively homogenize at similar Th, suggesting the occurrence of boiling. The W1-type FIs in late stage V and stage VI, yield Th of 102-406°C and salinities of 0-4.7 wt.% NaCl eqv. The δD_(H_2O)and δ^(18) O(H_2O)values of the ore-forming fluids in quartz-sulfide episode vary from-112‰ to-76‰, and 11.0‰ to 1.0‰, respectively. All these above observations reveal that the early ore-forming fluids are magmatic in origin, and characterized by high temperature and moderate to high salinity, and gradually evolve to low temperature, low salinity meteoric water. The Huoshenmiao Mo δeposit is associated with the magmatism event induced by the protracted subduction of the Izanagi plate beneath the eastern China continent. The δecrease in temperature, salinity and f(O_2), as well as change of p H δue to boiling and fluid-rock interaction, are the main factors controlling Mo δeposition.
基金supported by the National Basic Research Program of China(973 Program,2015CB932303)the National Natural Science Foundation of China(NSFC)(21733004 and 21473039)the International Cooperation Program of Shanghai Science and Technology Committee(STCSM)(17520711200)~~
文摘Carbon supported Pt-Co alloys are among the most promising electrocatalysts towards oxygen reduction reaction(ORR)for the application in low temperature fuel cells and beyond,thus their facile and green synthesis is highly demanded.Herein we initially report an alternate aqueous phase one-pot synthesis of such catalysts(containing nominally ca.20 wt.%Pt)based on dimethylamine borane(DMAB)reduction.The as-obtained electrocatalyst(denoted as Pt3Co/C-DMAB)is compared with the ones obtained by NaBH4 and N2H4·H2O reduction(denoted as Pt3Co/C-NaBH4 and Pt3Co/C-N2H4·H2O,respectively)as well as a commercial Pt/C,in terms of the structure and electrocatalytic property.It turns out that Pt3Co/C-DMAB exhibits the highest ORR performance among all the tested samples in an O2-saturated 0.1 mol/L HClO4,with the mass activity(specific activity)ca.4(6)times as large as that for Pt/C.After 10000 cycles of the accelerated degradation test,the half-wave potential for ORR on Pt3Co/C-DMAB decreases only by 4 mV,in contrast to 24 mV for that on Pt/C.Pt3Co/C-NaBH4 or Pt3Co/C-N2H4·H2O shows a specific activity comparable to that for Pt3Co/C-DMAB,but a mass activity similar to that for Pt/C.ICP-AES,TEM,XRD and XPS characterizations indicate that Pt3Co nanoparticles are well-dispersed and alloyed with a mean particle size of ca.3.4±0.4 nm,contributing to the prominent electrocatalytic performance of Pt3Co/C-DMAB.This simple aqueous synthetic route may provide an alternate opportunity for developing efficient practical electrocatalysts for ORR.
基金The work presented in this paper was fully supported by the following projects:National Natural Science Foundation of China(51775196)Guangdong Province Science and Technology Project(2017B090912003)+3 种基金High-level Personnel Special Support Plan of Guangdong Province(2016TQ03X289)The Fundamental Research Funds for the Central Universities(Project No.2018ZD30)Guangdong Province Science and Technology Project(2017B090911014)Guangzhou Science and Technology Project(201704030097)。
文摘In order to meet the clinical requirements of spine surgery,this paper proposed the exploratory research of computer-aided design and selective laser melting(SLM)fabrication of a bionic porous titanium spine implant.The structural design of the spinal implant is based on CT scanning data to ensure correct matching,and the mechanical properties of the implant are verified by simulation analysis and laser selective melting experiment.The surface roughness of the spinal implant manufactured by SLM without post-processing is Ra 15μm,and the implant is precisely jointed with the photosensitive resin model of the upper and lower spine.The surface micro-hardness of the implant is HV 373,tensile strengthσ_(b)=1238.7 MPa,yield strengthσ_(0.2)=1043.9 MPa,the elongation is 6.43%,and the compressive strength of porous structure under 84.60%porosity is 184.09 MPa,which can meet the requirements of the reconstruction of stable spines.Compared with the traditional implant and intervertebral fusion cage,the bionic porous spinal implant has the advantages of accurate fit,porous bionic structure and recovery of patients,and the ion release experiment proved that implants manufactured by SLM are more suitable for clinical application after certain treatments.The elastic modulus of the sample is improved after heat treatment,mainly because the microstructure of the sample changes fromα’phase toα+βdual-phase after heat treatment.In addition,the design of high-quality bionic porous spinal implants still needs to be optimized for the actual needs of doctors.
基金supported by the National Science Foundation of China (51702327, 51521091)the Major Basic Research Program, Ministry of Science and Technology of China (2014CB239401)+2 种基金the Key Research Program of Frontier Sciences CAS (QYZDB-SSW-JSC039)the awards of the IMR SYNL-T.S. Kê Research Fellowship the Newton Advanced Fellowship~~
文摘Photocatalytic water oxidation for O2evolution is known as a bottle neck in water splitting.Various strategies have been conducted to keep the energetics of photogenerated holes or to create more holes in the bulk to reach the surface for efficient photocatalytic water oxidation.Our previous study demonstrated the effectiveness of interstitial boron doping in improving photocatalytic water oxidation by lowering the valence band maximum of TiO2with a concentration gradient of boron.In this study,homogeneous doping of interstitial boron was realized in a TiO2shell with mixed anatase/rutile phases that was produced by the gaseous hydrolysis of the surface layer of TiB2crystals in a moist argon atmosphere.Consequently,the homogeneous doping and lowered valence band maximum improved the energetics of holes for efficient photocatalytic water oxidation.
基金supported by the National Natural Science Foundation of China(51775196)Guangdong Province Science and Technology Project(2017B090912003,2017B090911014)+3 种基金High-level Personnel Special Support Plan of Guangdong Province(2016TQ03X289)Guangzhou Star of Pearl River Talent Project(201710010064)the Fundamental Research Funds for the Central Universities(Project Nos.2018ZD30,2019MS060)Guangzhou Science and Technology Project(201704030097).
文摘In this paper,a novel micromixer with complex 3D-shape inner units was put forward and fabricated by metal Additive Manufacturing(AM).The design of the micromixer combined the constraints of selective laser melting technology and the factors to improve mixing efficiency.Villermaux-Dushman reaction system and Compute Fluid Design(CFD)simulation were conducted to investigate the performance and the mechanism of this novel micromixer to improve mixing efficiency.The research found that the best mixing efficiency of this novel micromixer could be gained when the inner units divided fluid into five pieces with a uniform volume.Compared with a conventional micromixer without obstacle in the channel,the micromixer designed in this research achieved higher mixing efficiency and reduce the pressure drop by 10.34%.The mixing behaviour in this novel micromixer was discussed,which mainly contains two types:collisions and swirls.Via collisions,the fluid micro masses would hit each other directly,which broke the boundaries of micro masses and promoted the interchange of species in the whole flow field.In swirls,the fluid micro masses were drawn into thin and long slices,which increased the size of the contact area and enhanced molecule diffusion.Finally,the application scheme of this novel micromixer was briefly discussed.
基金supported by the National Natural Science Foundation of China(11472211)the Natural Science Foundation of Education Department of Shaanxi Province of China(2013JK1042).
文摘Transverse vibration and stability analysis of circular plate subjected to follower force and thermal load are analyzed.Based on the thin plate theory in involving the variable temperature,the differential equation of transverse vibration for the axisymmetric circular plate subjected to follower force and thermal load is established.Then,the differential equation of vibration and corresponding boundary conditions are discretized by the differential quadrature method.Meanwhile,the generalized eigenvalue under three different boundary conditions are calculated.In this case,the change curve of the first order dimensionless complex frequency of the circular plate subjected to the follower force in the different conditions with the variable temperature coefficient and temperature load is analyzed.The stability and corresponding critical loads of the circular plate subjected to follower force and thermal load with simply supported edge,clamped edge and free edge are discussed.The results provide theoretical basis for improving the dynamic stability of the circular plate.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51578516 and 51238012)the Basic Research Foundation of Institute of Engineering Mechanics,CEA(Grant No.2011B02)+1 种基金973 Program(Grant No.2011CB013601)the Wuhan Blasting Company
文摘Ground vibration accelerations caused by the collapse of blasting demolition of urban viaducts was recorded in ordered to analyze the engineering characteristics and effects on the surrounding buildings. Through the analysis of peak ground acceleration,peak frequency,duration and response spectra of the recorded vibrations in different acceleration arrays,some conclusions are drawn: the peak ground acceleration decreases with increasing distance, and the amplitude of vertical component is higher than that of the horizontal components,especially in near source region. The peak frequency of ground acceleration decreases with distance,and in near source region,it is larger than the natural frequency of the surrounding buildings,and thus it will not have much effect on the buildings. The duration of ground acceleration caused by collapse is longer than that caused by blasting itself. The vertical response spectrum is the largest of the three components,and it decreases rapidly in the near source region of about 30 m,but beyond that the distance decreases slowly.The horizontal components are smaller than the local seismic design spectrum,while the vertical component for natural period under 0.15 s exceeds the seismic design spectrum,but the natural periods of general buildings are usually beyond that domain,so this will not have much effect on the nearby buildings.
文摘[Objectives] To study the temporomandibular disorder(TMD) in male candidates of conscription age. [Methods] The TMD was surveyed in 2 152 young males who participated in 2015, 2016 and 2017 physical examinations for conscription in Qingzhou City, Weifang of Shandong Province. [Results] Cases with previous positive symptoms and with positive clinical signs respectively accounted for 5.02% and 18.91% of the whole respondents. Among the three major symptoms, the occurrence of clicking, accounting for 17.7% of the total case amount, ranked the first; among 407 cases with positive clinical signs, the top two symptoms were simple clicking(50.86%) and clicking with abnormal mandibular movement(36.85%). [Conclusions] TMD occurs in male candidates of conscription age with a relatively high occurrence, but most cases are mild with clicking as the major symptom.
基金supported by High-level Personnel Special Support Plan of Guangdong Province(2016TQ03X289).
文摘As a key technology in the advanced manufacturing field,additive manufacturing(AM)technology introduces a new design concept that is guided by function rather than by manufacturing,promoting the rapid development of the high-tech industry.However,as-fabricated parts have an unstable performance in quality due to rapid heating and rapid cooling induced by energy source.Therefore,quality control of the manufacturing process,which is mainly studied by numerical simulation,is one of the most active research topics in the AM field.In the view of increasing attention in AM technology,this special issue contributes to highlighting recent challenges and developments of AM-based design and simulation,with focuses on microstructure stability and evolution,multi-physics problems and process enhancements.
文摘The 2015 Geoscience Frontiers Annual Convention was held in Beijing, China during October 29, 2015 hosted by China University of Geosciences, Beijing (Fig. 1). This convention assembled earth scientists from 5 countries, including Australia (Prof. Franco Pirajno), China (several delegates), Germany (Prof. Daniel Harlov), Italy (Prof. Carlo Doglioni), Norway (Dr. Mathew Domeier), South Korea (Prof. S. Kwon) and United States (Prof. Richard Goldfarb), along with representatives from Elsevier (Beijing).
文摘The 2016 Geoscience Frontiers Annual Convention was held in Beijing,China on October 14,2015 hosted by China University of Geosciences,Beijing(Fig.1).This convention assembled earth scientists from six countries,including Australia(Dr.Christopher Spencer),Italy(Prof.Emilio Saccani),India(Prof.G.Parthasarathy and Prof.M.Jayananda),Japan(Prof.Masaki Yoshida),UK(Dr.Nick Roberts),China,and also representative from Elsevier(Beijing).
基金supported by the National Natural Science Foundation of China(Grant No.52305358)the Fundamental Research Funds for the Central Universities,China(Grant No.2023ZYGXZR061)+2 种基金the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2022A1515010304)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology,China(Grant No.2023QNRC001)the Young Talent Support Project of Guangzhou,China(Grant No.QT-2023-001).
文摘Determining appropriate process parameters in large-scale laser powder bed fusion(LPBF)additive manufacturing pose formidable challenges that necessitate advanced approaches to minimize trial-and-error during experimentation.This work proposed a data-driven approach based on stacking ensemble learning to predict the mechanical properties of Ti6Al4V alloy fabricated by large-scale LPBF for the first time.This method can adapt to the complexity of large-scale LPBF data distribution and exhibits a more generalized predictive capability compared to base models.Specifically,the stacking model utilized artificial neural network(ANN),gradient boosting regressor,kernel ridge regression,and elastic net as base models,with the Lasso model serving as the meta-model.Bayesian optimization and cross-validation were utilized for model optimization and training based on a limited data set,resulting in higher predictive accuracy compared to traditional artificial neural network model.The statistical analysis of the ANN and stacking models indicates that the stacking model exhibits superior performance on the test set,with a coefficient of determination value of 0.944,mean absolute percentage error of 2.51%,and root mean squared error of 27.64,surpassing that of the ANN model.All statistical metrics demonstrate superiority over those obtained from the ANN model.These results confirm that by integrating the base models,the stacking model exhibits superior predictive stability compared to individual base models alone,thereby providing a reliable assessment approach for predicting the mechanical properties of metal parts fabricated by the LPBF process.
基金supported by the National Natural Science Foundation of China (Nos.U20A20242,51972312,and 52188101).The MD simulations are performed on TianHe-1 (A)at the National Supercomputer Center in Tianjin.
文摘In this work,by simplifying the nanopores of porous C/C preform with single-walled carbon nanotubes(SWCNT)or double-walled carbon nanotubes(DWCNTs),the infiltration of liquid Si in the SWCNTs and DWCNTs was studied by molecular dynamics(MD)simulations.As a result,a quantitative relationship between tube diameter and liquid Si infiltration rate was established,which has been successfully ap-plied to reproduce the available experiment result.The obtained relationship indicates that the capillary infiltration of liquid Si at the nanoscale still conforms to the classic Lucas-Washburn law,however,the liquid Si infiltration quickly stops in small tubes with a diameter of less than 3 nm due to an obvious contraction of the tube wall.This work may provide theoretical guidance for pore structure optimization of porous C/C preform to fabricate high-density C/SiC composites.
基金supported by the National Key R&D Program of China(No.2021YFA1500800)the National Natural Science Foundation of China(Nos.51825204 and 52072379)+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2022190)Young Talent Project of Shenyang National Laboratory for Materials Science.Y.Q.Y.also thanks the IMR Introducing Outstanding Scholars project.
文摘Melon-derived carbon nitride photocatalysts are a kind of star layered materials applied in solar energy conversion.With in-planeπorbitals of the heptazine subunits and their overlap along the melon chains being the most distinctive feature,the condition of melon chains is of great importance for the atomic and energy band structures of carbon nitride photocatalysts as well as their photo-activities.In principle,fragmentized melon chains in practical carbon nitride would lead to unfavorable structure disorder both in longitudinal and vertical directions,thus inhibiting the efficient transfer for photo-induced electrons and holes,respectively.Here,with a facile regrowth approach,that is to treat carbon nitride under the atmosphere containing C/N species,the melon chains in carbon nitride were experimentally lengthened,which was reflected by the regularly fraction variation of different nitrogen species derived from X-ray photoelectron spectroscopy(XPS)analysis.The prolonged melon chains led to dramatically improved in-plane structure order and boosted transfer of photo-induced electrons and holes,which were confirmed by the spontaneous photo-deposition of oxidants and reductants.The combination of this regrowth approach with homogenously distributed nitrogen vacancies resulted in much enhanced visible-light-responsive photoactivities.Besides,control experiments using nitrogen-vacancy-free carbon nitride and different C/N-contained precursors showed the compatibility as well as the critical factors for the lengthening effects of the regrowth approach.We hope that the facile but efficient regrowth approach could be widely adopted in melon-derived carbon nitride photocatalysts used for various applications.
基金financial support of this work from the Key Research and Development Project of Gansu Province(No.20YF3GA008)the Lanzhou Science and Technology Lanzhou Science and Technology Bureau Project(No.2022-2-15)+1 种基金Gansu Provincial Science and Technology Commissioner Special Project(No.22CX8GA106)Key Research and Development Project of Gansu Natural Energy Institute(No.2019YF-02).
文摘Photocatalytic degradation of volatile organic compounds(VOCs)is a significant applying aspect of pho-tocatalysis.Both the modulation of photocatalysts and the rational dispersion of them on supports are key for solar-driven VOC degradation.Conventional batch-type photoreactors have low efficiency while continuous-flow photoreactors suffer from the problem of incomplete removal of VOCs.Herein,aiming for continuous and complete degradation of toluene gas as the target contaminant,continuous-flow pho-tocatalytic degradation reactors were made by adhering the vanadium and nitrogen codoped TiO_(2)on honeycomb ceramics(V/N-TiO_(2)@HC)by a simple sol-gel method.In such a reactor,the rich ordered pores in the HC accelerate mass transport of toluene,and the introduction of V/N dopants narrows the bandgap and widens the light absorption range of TiO_(2),together resulting in continuous and nearly-complete pho-tocatalytic degradation of toluene.The unique and stable structure of HC allows the photocatalysts to be reused.The degradation rate of toluene gas can reach 97.8%,and after 24 rounds of photocatalytic degra-dation,there is still a degradation rate of 96.7%.The impacts of loading times and gaseous flow rate on the photocatalytic performance of V/N-TiO_(2)@HC are studied in detail.Our study provides a practical so-lution for the continuous and complete photocatalytic degradation of VOCs and opens a new application field for HC.
基金supported by National Key R&D Program of China(2022YFF0705104)National Natural Science Foundation of China(51402199,U21A20316)+1 种基金Liaoning Revitalization Talents Prograrn(XLYC2007193)Natural Science Foundation of Liaoning Province(2021NLTS1210).
文摘CdS nanospheres were grown on indium tin oxide(ITO)substrate using a hydrothermal method.The crystal structure,morphology and electronic structure of the samples synthesized were characterized in detail.The results confirm that the crystallinity,size,crystal defects of the CdS nanospheres and the film thickness of CdS photoelectrodes can be tuned by varying the precursor Cd2+concentration.Combined with charge transfer dynamics analysis,it can be found that proper particle size and film thickness,as well as fewer defects,will result in better charge separation efficiency of the prepared CdS/ITO photoelectrodes,thereby exhibiting better photoelectrochemical performance for water splitting.The optimized CdS/ITO photoelectrode synthesized with a Cd2+concentration of 0.14 mol⋅L1 gave a photocurrent density of 5.10 mA⋅cm^(-2)at potential of 1.23 V versus the reversible hydrogen electrode(RHE),under a simulated solar illumination of 100 mW⋅cm^(-2).