The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the gen...The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.展开更多
There are series of Cu-Ni sulfide-bearing mafic-ultramafic intrusions widespread in north JilinProvince,Northeastern China. The intrusions formed in Xing’an-Mongolian Orogenic Belt near to the northeastern margin of ...There are series of Cu-Ni sulfide-bearing mafic-ultramafic intrusions widespread in north JilinProvince,Northeastern China. The intrusions formed in Xing’an-Mongolian Orogenic Belt near to the northeastern margin of North China Craton. The complexes were formed in almost same period according to the zircon U-Pb dating reported recently, which means that the complexes were formed in same tectonic period and belong to one tectonic magmatic event. The rock assemblages are different from the ophiolite type and Yidun type in orogenic belt. The mafic-ultramafic complexes formed in the range from 217 Ma to 232 Ma coeval with A-type granites in the area, which formed bimodal igneous rock assemblage. According to the regional angular unconformities, there were existed the orogenies of Caledonian, Hercynian, Early Indosinian, Late Indosinian and Yanshanian. The Early Indosinian coeval with orogenic I-type granites and sanukitie that suggesting the lithosphere thickening in the extrusion tectonic setting of orogenic processes, however the Late Indosinian coeval with bimodal igneous rock assemblage that suggesting the lithosphere thinning in the extension tectonic setting of post-orogenic processes in the Xing’an-Mongolian Orogenic Belt. Chemical composition of the mafic-ultramafic rocks has the characteristics of high-Mg and low-K tholeiites related with inter-continental post-orogenic tectonic setting. The trace elements indicate their formed in conditions of continental extension belt or initial rift and has the characteristics of revolution from oceanic island arc, volcanic arc of continental margin to continental extended belt. The low initial Sr isotopic ratios and positive εNd(t) values suggest that the initial magma of the complexes come from the parting melting of depleted lithospheric mantle. The depleted ithospheric mantle was new formed supported by zircon Hf isotope in Hongqiling complex. The depleted lithospheric mantle may be caused by the asthenosheric mantle upwelling and underplating in the tectonic setting of extension during the Late Indosinian post-orogenic processes.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.52005441)Young Elite Scientist Sponsorship Program by CAST of China (Grant No.2022-2024QNRC001)+4 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ21E050017)Zhejiang Provincial“Pioneer”and“Leading Goose”R&D Program of China (Grant Nos.2022C01122,2022C01132)State Key Laboratory of Mechanical System and Vibration of China (Grant No.MSV202316)Fundamental Research Funds for the Provincial Universities of Zhejiang of China (Grant No.RF-A2023007)Research Project of ZJUT of China (Grant No.GYY-ZH-2023075)。
文摘The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.
文摘There are series of Cu-Ni sulfide-bearing mafic-ultramafic intrusions widespread in north JilinProvince,Northeastern China. The intrusions formed in Xing’an-Mongolian Orogenic Belt near to the northeastern margin of North China Craton. The complexes were formed in almost same period according to the zircon U-Pb dating reported recently, which means that the complexes were formed in same tectonic period and belong to one tectonic magmatic event. The rock assemblages are different from the ophiolite type and Yidun type in orogenic belt. The mafic-ultramafic complexes formed in the range from 217 Ma to 232 Ma coeval with A-type granites in the area, which formed bimodal igneous rock assemblage. According to the regional angular unconformities, there were existed the orogenies of Caledonian, Hercynian, Early Indosinian, Late Indosinian and Yanshanian. The Early Indosinian coeval with orogenic I-type granites and sanukitie that suggesting the lithosphere thickening in the extrusion tectonic setting of orogenic processes, however the Late Indosinian coeval with bimodal igneous rock assemblage that suggesting the lithosphere thinning in the extension tectonic setting of post-orogenic processes in the Xing’an-Mongolian Orogenic Belt. Chemical composition of the mafic-ultramafic rocks has the characteristics of high-Mg and low-K tholeiites related with inter-continental post-orogenic tectonic setting. The trace elements indicate their formed in conditions of continental extension belt or initial rift and has the characteristics of revolution from oceanic island arc, volcanic arc of continental margin to continental extended belt. The low initial Sr isotopic ratios and positive εNd(t) values suggest that the initial magma of the complexes come from the parting melting of depleted lithospheric mantle. The depleted ithospheric mantle was new formed supported by zircon Hf isotope in Hongqiling complex. The depleted lithospheric mantle may be caused by the asthenosheric mantle upwelling and underplating in the tectonic setting of extension during the Late Indosinian post-orogenic processes.