The cuticular wax,acting as the ultimate defense barrier,is essential for the normal morphogenesis of plant organs.Despite this importance,the connection between wax composition and leaf development has not been thoro...The cuticular wax,acting as the ultimate defense barrier,is essential for the normal morphogenesis of plant organs.Despite this importance,the connection between wax composition and leaf development has not been thoroughly explored.In this study,we characterized a new maize mutant,ragged leaf4(rgd4),which exhibits crinkled and ragged leaves starting from the sixth leaf stage.The phenotype of rgd4 is conferred by ZmCER1,which encoding an aldehyde decarbonylase involved in wax biosynthesis.ZmCER1 function deficient mutant displayed reduced cuticular wax density and disordered bulliform cells(BCs),while ZmCER1 overexpressing plants exhibited the opposite effects,indicating that ZmCER1 regulates cuticular wax biosynthesis and BCs development.Additionally,as the density of cuticular wax increased,the water loss rate of detached leaf decreases,suggesting that ZmCER1 is positively correlated with plant drought tolerance.展开更多
Using historical topographic maps and aerospace remote sensing data since the 1930s,this study investigates the spatial and temporal evolution of Dongting Lake beach.The evolution characteristics of the beaches in dif...Using historical topographic maps and aerospace remote sensing data since the 1930s,this study investigates the spatial and temporal evolution of Dongting Lake beach.The evolution characteristics of the beaches in different regions and the related formation mechanism were also analyzed.The results show that Dongting Lake beach expanded from 1622.17 km^(2)in 1938 to 1962.28 km^(2)in 2018.With the addition of 980.96 km^(2)of reclaimed high bay beach,the beach area increased by 1321.07km^(2).However,the change process fluctuated somewhat rather than continuously increased.Substantial expansion of the beach area occurred during 1938-1948 and 1958-1998,while slow contraction of the beach area occurred during 1948-1958 and 1998-2018.Dongting Lake beach was dominated by terrigenous debris,the sedimentary types included lacustrine deposits,river alluvial deposits,floodplain and main channel deposits,and river-lake interaction deposits.The rapid expansion occurred in the estuary delta of the east branch of the Ouchi River,which advanced 38.55 km from the estuary toward the lake over the past 90 years.The causes of the changes in the beach included beach reclamation,sediment changes,and lake sand mining.Seventy embankments(covering 2057.77 km^(2))have been enclosed in the Dongting Lake area since 1930s,of which the high bay beach covered an area of 980.96km^(2).The amount of sediment deposited in Dongting Lake has reached 230857×10^(4) m^(3) since 1950s,which is equivalent to an average deposition height of 0.85 m on the lake's bottom.The mining of lake sand caused the beach to shrink,and the proportion of the beach area decreased from 77.18%in 1998 to 72.60%in 2018.The results of this study provide objective data for protecting the lakeshore's ecosystem and biodiversity and supporting the ecological restoration and environmental protection of the Yangtze River Basin.展开更多
Mg_(3)Sb_(2)-based thermoelectric materials have been the focus of widespread investigations as promising candidates for the harvesting of waste heat.Interface stability and service performance are key points for the ...Mg_(3)Sb_(2)-based thermoelectric materials have been the focus of widespread investigations as promising candidates for the harvesting of waste heat.Interface stability and service performance are key points for the commercial applications of these materials.We utilized Mg_(4.3)Sb_(3)Ni as a barrier layer to improve the thermal stability of Mg 3 Sb 2-based devices.However,its intrinsic high resistivity contributed nega-tively to the desired performance of the device.In this work,we investigated two other Mg-Sb-Ni ternary phases,MgSbNi and MgSbNi_(2),as new barrier layer materials to connect with Mg_(3.2)Sb_(2)Y_(0.05).The results show that the efficiency of the Mg_(1.2)SbNi/Mg_(3.2)Sb_(2)Y_(0.05)/Mg_(1.2)SbNi joint is increased by 33%relative to the higher Mg-content barriers due to lower resistivity.The system exhibited good interfacial compatibility and showed little change with aging at 673 K for 20 days.展开更多
Introduction:The swift advancement of biotechnology has presented both opportunities and challenges to our society,thrusting biosafety to the forefront of concern.Consequently,the evaluation of rescue capabilities in ...Introduction:The swift advancement of biotechnology has presented both opportunities and challenges to our society,thrusting biosafety to the forefront of concern.Consequently,the evaluation of rescue capabilities in the event of a bioterrorism incident becomes of paramount importance.Currently,there is a notable absence of specific measurement criteria and a comprehensive evaluation system.This paper aims to establish a systematic approach towards assessing emergency response capabilities in the context of bioterrorism incidents.Methods:We employed an enhanced Delphi methodology to establish an index evaluation framework.Subsequently,the weight of the judgment matrix was ascertained via the application of the fuzzy comprehensive evaluation approach.This led to the creation of a fuzzy comprehensive evaluation model for bioterrorism rescue capability.Results:A modified Delphi study was conducted involving 11 experts across two rounds,achieving a response rate of 100%.The Kendall coordination coefficients recorded in the first and second rounds were 0.303 and 0.632,respectively(P<0.05).Upon comprehensive analysis involving score,coefficient of variation,and full score ratio,we distinguished five primary indicators and 25 secondary indicators.Subsequently,an evaluation model was developed based on the Analytic Hierarchy Process(AHP)tailored to assess the response to a rescue from bioterrorism.Discussion:The expert panel confirmed consensus on all aspects of the model,validating its comprehensive content.The succeeding course of action involves converting the assessment model to a measurable scale,affirming its functionality,and implementing it in practical evaluation tasks to further enhance the capabilities of the biological incident rescue team.展开更多
基金supported by Professor Zhukuan Cheng from Institute of Genetics and Developmental Biology,Chinese Academy of Sciencessupported by the Funds of Key R&D Program of Shandong Province(2022LZGC006)Key R&D Program of Shandong Province(2023LZGC006)。
文摘The cuticular wax,acting as the ultimate defense barrier,is essential for the normal morphogenesis of plant organs.Despite this importance,the connection between wax composition and leaf development has not been thoroughly explored.In this study,we characterized a new maize mutant,ragged leaf4(rgd4),which exhibits crinkled and ragged leaves starting from the sixth leaf stage.The phenotype of rgd4 is conferred by ZmCER1,which encoding an aldehyde decarbonylase involved in wax biosynthesis.ZmCER1 function deficient mutant displayed reduced cuticular wax density and disordered bulliform cells(BCs),while ZmCER1 overexpressing plants exhibited the opposite effects,indicating that ZmCER1 regulates cuticular wax biosynthesis and BCs development.Additionally,as the density of cuticular wax increased,the water loss rate of detached leaf decreases,suggesting that ZmCER1 is positively correlated with plant drought tolerance.
基金supported by the Hunan Provincial Natural Science Foundation Project(No.2024JJ8320)the Hunan Province Natural Resources Science and Technology Plan Project(No.20230151ST)+1 种基金the Hunan Province Science Popularization Special Plan(Science and Technology Talent Support Project)(No.2023TJ-N16)the Open Fund of Hunan Provincial Key Laboratory for Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area(No.DTH Key Lab.2021-28)。
文摘Using historical topographic maps and aerospace remote sensing data since the 1930s,this study investigates the spatial and temporal evolution of Dongting Lake beach.The evolution characteristics of the beaches in different regions and the related formation mechanism were also analyzed.The results show that Dongting Lake beach expanded from 1622.17 km^(2)in 1938 to 1962.28 km^(2)in 2018.With the addition of 980.96 km^(2)of reclaimed high bay beach,the beach area increased by 1321.07km^(2).However,the change process fluctuated somewhat rather than continuously increased.Substantial expansion of the beach area occurred during 1938-1948 and 1958-1998,while slow contraction of the beach area occurred during 1948-1958 and 1998-2018.Dongting Lake beach was dominated by terrigenous debris,the sedimentary types included lacustrine deposits,river alluvial deposits,floodplain and main channel deposits,and river-lake interaction deposits.The rapid expansion occurred in the estuary delta of the east branch of the Ouchi River,which advanced 38.55 km from the estuary toward the lake over the past 90 years.The causes of the changes in the beach included beach reclamation,sediment changes,and lake sand mining.Seventy embankments(covering 2057.77 km^(2))have been enclosed in the Dongting Lake area since 1930s,of which the high bay beach covered an area of 980.96km^(2).The amount of sediment deposited in Dongting Lake has reached 230857×10^(4) m^(3) since 1950s,which is equivalent to an average deposition height of 0.85 m on the lake's bottom.The mining of lake sand caused the beach to shrink,and the proportion of the beach area decreased from 77.18%in 1998 to 72.60%in 2018.The results of this study provide objective data for protecting the lakeshore's ecosystem and biodiversity and supporting the ecological restoration and environmental protection of the Yangtze River Basin.
基金supported by the National Science Foundation of China(Grant No.52202277)the Special Project of Science and Technology Cooperation and Exchange of Shanxi Province(Grant No.202104041101007).
文摘Mg_(3)Sb_(2)-based thermoelectric materials have been the focus of widespread investigations as promising candidates for the harvesting of waste heat.Interface stability and service performance are key points for the commercial applications of these materials.We utilized Mg_(4.3)Sb_(3)Ni as a barrier layer to improve the thermal stability of Mg 3 Sb 2-based devices.However,its intrinsic high resistivity contributed nega-tively to the desired performance of the device.In this work,we investigated two other Mg-Sb-Ni ternary phases,MgSbNi and MgSbNi_(2),as new barrier layer materials to connect with Mg_(3.2)Sb_(2)Y_(0.05).The results show that the efficiency of the Mg_(1.2)SbNi/Mg_(3.2)Sb_(2)Y_(0.05)/Mg_(1.2)SbNi joint is increased by 33%relative to the higher Mg-content barriers due to lower resistivity.The system exhibited good interfacial compatibility and showed little change with aging at 673 K for 20 days.
基金Supported by the National Key Research and Development Program of China(2021YFC2600504)National Key Research and Development Program-Research on Bioterrorism Prevention and Control Technology in Important Public Places.
文摘Introduction:The swift advancement of biotechnology has presented both opportunities and challenges to our society,thrusting biosafety to the forefront of concern.Consequently,the evaluation of rescue capabilities in the event of a bioterrorism incident becomes of paramount importance.Currently,there is a notable absence of specific measurement criteria and a comprehensive evaluation system.This paper aims to establish a systematic approach towards assessing emergency response capabilities in the context of bioterrorism incidents.Methods:We employed an enhanced Delphi methodology to establish an index evaluation framework.Subsequently,the weight of the judgment matrix was ascertained via the application of the fuzzy comprehensive evaluation approach.This led to the creation of a fuzzy comprehensive evaluation model for bioterrorism rescue capability.Results:A modified Delphi study was conducted involving 11 experts across two rounds,achieving a response rate of 100%.The Kendall coordination coefficients recorded in the first and second rounds were 0.303 and 0.632,respectively(P<0.05).Upon comprehensive analysis involving score,coefficient of variation,and full score ratio,we distinguished five primary indicators and 25 secondary indicators.Subsequently,an evaluation model was developed based on the Analytic Hierarchy Process(AHP)tailored to assess the response to a rescue from bioterrorism.Discussion:The expert panel confirmed consensus on all aspects of the model,validating its comprehensive content.The succeeding course of action involves converting the assessment model to a measurable scale,affirming its functionality,and implementing it in practical evaluation tasks to further enhance the capabilities of the biological incident rescue team.