Spent Coffee Ground (SCG) is characterized by high organic content, in the form of insoluble polysaccharides bound and phenol compounds. Phenol compounds are toxic to nature and <span style="font-family:Verdan...Spent Coffee Ground (SCG) is characterized by high organic content, in the form of insoluble polysaccharides bound and phenol compounds. Phenol compounds are toxic to nature and <span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> a cause of environmental pollution. Composting method of this study is aerobic static batch composting with temperature control with adding activators of some fungi such as </span><i><span style="font-family:Verdana;">Aspergillus sp</span></i><span style="font-family:Verdana;">, and </span><i><span style="font-family:Verdana;">Penicillium sp. </span></i><span style="font-family:Verdana;">The purpose of the research is to fill the research gap from previous studies of spent coffee grounds compost, which requires a long time in composting, so that if it is used directly on the soil and plants, the positive effect also requires a long time. The result of composting for 28 days with this method is that mature compost has black crumb and normal pH, with characteristics of C/N ratio below 10: C1 (7.06), C2 (6.99). This value is far from the control with a C/N ratio of 8.33. Decompose rate of macromolecule are above 40% for lignin and 70% for cellulose. Implementation of compost in radish plants, resulting Germination Index above 80% which indicates that the compost is ripe: control (92.39%), C1 (183.88%), C2 (191.86%). The results of the analysis with FTIR also showed that the compost was mature and stable, and rich in minerals. So, it can be concluded </span><span style="font-family:Verdana;">that</span><span style="font-family:Verdana;"> this composting method can speed up composting time and optimize the results of compost produced.</span>展开更多
Biomass has the potential and benefits of being an alternative energy source to replace fossil fuels that exist today in Indonesia and other tropical countries. In addition, biomass has an abundant stock or supply. By...Biomass has the potential and benefits of being an alternative energy source to replace fossil fuels that exist today in Indonesia and other tropical countries. In addition, biomass has an abundant stock or supply. By assessing the feasibility of recovering potassium, it is hoped that more potassium resources and in future Indonesia will be dependent on imported fertilizers and increase the agricultural industry, which is the aims of this study. The best extraction result is using CH<sub>3</sub>COOH. Treatment of 1:10 solid-liquid ratio with the help of 1 mol/l CH<sub>3</sub>COOH was chosen as the best treatment because it is more economically efficient. Recovery of K with the help of tartaric acid and acetic acid resulted in a K recovery efficiency of around 94%. The optimal condition for the syngenite method is the addition of a magnesium dose of 5 mmol/l and at pH 11, the Ca: K ratio is 1:2.1 with 42% K. This can be a suggestion which method is more effective and efficient in recovery K.展开更多
Phosphorus (P) and potassium (K) are non-renewable materials and </span><span style="font-family:Verdana;">widely</span><span style="font-family:Verdana;"> in many industrie...Phosphorus (P) and potassium (K) are non-renewable materials and </span><span style="font-family:Verdana;">widely</span><span style="font-family:Verdana;"> in many industries such as </span><span style="font-family:Verdana;">agricultural</span> <span style="font-family:Verdana;">sectors</span><span style="font-family:Verdana;">. On the other hand, the demand </span><span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> P and K as fertilizers increases which following </span><span style="font-family:Verdana;">global</span><span style="font-family:Verdana;"> population. </span><span><span style="font-family:Verdana;">The nutrient source of P and K which get from biomass waste <i></span><i><span style="font-family:Verdana;">i.e.</i></span></i><span style="font-family:Verdana;"> incinerated </span><span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> activated sludge and coffee husk biochar, respectively. The present study was conducted recovery of P and K as struvite-K (KMgPO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">·6H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O) precipitates. The results showed that alu</span></span><span><span style="font-family:Verdana;">minium was released simultaneously with P from incinerated activated sludge with precipitate of Al:P of 1:1, K:P of 0.5, and Mg:P of 3. However, aluminium was inhibited to form struvite-K. Then, we examined cation removal especially for removed Al by dissolved 0.5 M HNO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> and the solution was mixed with KH</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">PO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> and MgCl</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">·6H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O as </span><span style="font-family:Verdana;">source</span><span style="font-family:Verdana;"> of K and Mg, respectively. The results showed a</span></span><span style="font-family:Verdana;">luminium (Al)</span></span><span> </span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">was removed with precipitate K:P of 0.5, and Mg:P of 0.8. This study was confirmed that recovery of biomass incinerated was </span><span style="font-family:Verdana;">successful</span><span style="font-family:Verdana;"> as struvite-K and can be used as fertilizers.展开更多
Livestock wastewater is mainly treated with activated sludge, but ions such as phosphorus, potassium, ammonium, nitrate and sulfate remain in the effluent. In this study, the effects of residual ions on phosphorus rec...Livestock wastewater is mainly treated with activated sludge, but ions such as phosphorus, potassium, ammonium, nitrate and sulfate remain in the effluent. In this study, the effects of residual ions on phosphorus recovery using the magnesium potassium phosphate crystallization method were investigated when magnesium was added to increase the pH. If co-existing ions affect the products, the phosphorus to potassium molar ratio (K/P ratio) of the precipitate will deviate from being equimolar. Artificial wastewater test solutions containing 5.6 - 20.3 mM ammonium, 25.6 mM potassium, 6.5 mM phosphorus, 0 - 7.35 mM nitrate, and 0 - 3.06 mM sulfate were used. First, the optimum operating pH and amount of magnesium added to give a high phosphorus removal rate and recovery rate were determined. The experimental setup was a 10 L aerated and stirred reactor, and a 5 L settling tank. The K/P ratio in precipitate was approximately 1 using the optimum conditions. Continuous 2 h treatment allowed a white precipitate containing about 30 g of needle-like crystals to be obtained. Next, the effects of varying the ammonium, nitrate, and sulfate ion concentrations in the artificial effluent were investigated. Ammonium and sulfate ion concentrations of 8 mM or more and 3 mM or more, respectively, caused the K/P ratio to decrease to about 0.7 and 0.5, respectively. Varying the nitrate concentration did not affect the K/P ratio, even at a nitrate concentration of 7.35 mM.展开更多
文摘Spent Coffee Ground (SCG) is characterized by high organic content, in the form of insoluble polysaccharides bound and phenol compounds. Phenol compounds are toxic to nature and <span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> a cause of environmental pollution. Composting method of this study is aerobic static batch composting with temperature control with adding activators of some fungi such as </span><i><span style="font-family:Verdana;">Aspergillus sp</span></i><span style="font-family:Verdana;">, and </span><i><span style="font-family:Verdana;">Penicillium sp. </span></i><span style="font-family:Verdana;">The purpose of the research is to fill the research gap from previous studies of spent coffee grounds compost, which requires a long time in composting, so that if it is used directly on the soil and plants, the positive effect also requires a long time. The result of composting for 28 days with this method is that mature compost has black crumb and normal pH, with characteristics of C/N ratio below 10: C1 (7.06), C2 (6.99). This value is far from the control with a C/N ratio of 8.33. Decompose rate of macromolecule are above 40% for lignin and 70% for cellulose. Implementation of compost in radish plants, resulting Germination Index above 80% which indicates that the compost is ripe: control (92.39%), C1 (183.88%), C2 (191.86%). The results of the analysis with FTIR also showed that the compost was mature and stable, and rich in minerals. So, it can be concluded </span><span style="font-family:Verdana;">that</span><span style="font-family:Verdana;"> this composting method can speed up composting time and optimize the results of compost produced.</span>
文摘Biomass has the potential and benefits of being an alternative energy source to replace fossil fuels that exist today in Indonesia and other tropical countries. In addition, biomass has an abundant stock or supply. By assessing the feasibility of recovering potassium, it is hoped that more potassium resources and in future Indonesia will be dependent on imported fertilizers and increase the agricultural industry, which is the aims of this study. The best extraction result is using CH<sub>3</sub>COOH. Treatment of 1:10 solid-liquid ratio with the help of 1 mol/l CH<sub>3</sub>COOH was chosen as the best treatment because it is more economically efficient. Recovery of K with the help of tartaric acid and acetic acid resulted in a K recovery efficiency of around 94%. The optimal condition for the syngenite method is the addition of a magnesium dose of 5 mmol/l and at pH 11, the Ca: K ratio is 1:2.1 with 42% K. This can be a suggestion which method is more effective and efficient in recovery K.
文摘Phosphorus (P) and potassium (K) are non-renewable materials and </span><span style="font-family:Verdana;">widely</span><span style="font-family:Verdana;"> in many industries such as </span><span style="font-family:Verdana;">agricultural</span> <span style="font-family:Verdana;">sectors</span><span style="font-family:Verdana;">. On the other hand, the demand </span><span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> P and K as fertilizers increases which following </span><span style="font-family:Verdana;">global</span><span style="font-family:Verdana;"> population. </span><span><span style="font-family:Verdana;">The nutrient source of P and K which get from biomass waste <i></span><i><span style="font-family:Verdana;">i.e.</i></span></i><span style="font-family:Verdana;"> incinerated </span><span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> activated sludge and coffee husk biochar, respectively. The present study was conducted recovery of P and K as struvite-K (KMgPO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">·6H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O) precipitates. The results showed that alu</span></span><span><span style="font-family:Verdana;">minium was released simultaneously with P from incinerated activated sludge with precipitate of Al:P of 1:1, K:P of 0.5, and Mg:P of 3. However, aluminium was inhibited to form struvite-K. Then, we examined cation removal especially for removed Al by dissolved 0.5 M HNO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> and the solution was mixed with KH</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">PO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> and MgCl</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">·6H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O as </span><span style="font-family:Verdana;">source</span><span style="font-family:Verdana;"> of K and Mg, respectively. The results showed a</span></span><span style="font-family:Verdana;">luminium (Al)</span></span><span> </span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">was removed with precipitate K:P of 0.5, and Mg:P of 0.8. This study was confirmed that recovery of biomass incinerated was </span><span style="font-family:Verdana;">successful</span><span style="font-family:Verdana;"> as struvite-K and can be used as fertilizers.
文摘Livestock wastewater is mainly treated with activated sludge, but ions such as phosphorus, potassium, ammonium, nitrate and sulfate remain in the effluent. In this study, the effects of residual ions on phosphorus recovery using the magnesium potassium phosphate crystallization method were investigated when magnesium was added to increase the pH. If co-existing ions affect the products, the phosphorus to potassium molar ratio (K/P ratio) of the precipitate will deviate from being equimolar. Artificial wastewater test solutions containing 5.6 - 20.3 mM ammonium, 25.6 mM potassium, 6.5 mM phosphorus, 0 - 7.35 mM nitrate, and 0 - 3.06 mM sulfate were used. First, the optimum operating pH and amount of magnesium added to give a high phosphorus removal rate and recovery rate were determined. The experimental setup was a 10 L aerated and stirred reactor, and a 5 L settling tank. The K/P ratio in precipitate was approximately 1 using the optimum conditions. Continuous 2 h treatment allowed a white precipitate containing about 30 g of needle-like crystals to be obtained. Next, the effects of varying the ammonium, nitrate, and sulfate ion concentrations in the artificial effluent were investigated. Ammonium and sulfate ion concentrations of 8 mM or more and 3 mM or more, respectively, caused the K/P ratio to decrease to about 0.7 and 0.5, respectively. Varying the nitrate concentration did not affect the K/P ratio, even at a nitrate concentration of 7.35 mM.