期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Modified TiO_(2)/In_(2)O_(3) heterojunction with efficient charge separation for visible-light-driven photocatalytic CO_(2) reduction to C_(2) product
1
作者 Mengfang Liang Xiaodong Shao +8 位作者 Ji Yoon Choi young dok kim Trang Thu Tran Jeongyong kim Yosep Hwang Min Gyu kim Yunhee Cho Sophia Akhtar Hyoyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期714-720,共7页
Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic ... Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic CO_(2) conversion.Herein,a modified TiO_(2)/In_(2)O_(3)(R-P2 5/In_(2)O_(3-x)) type Ⅱ heterojunction composite with oxygen vacancies is designed for photocatalytic CO_(2) reduction,which exhibits excellent CO_(2) reduction activity,with a C_(2) selectivity of 56.66%(in terms of R_(electron)).In situ Fourier-transform infrared spectroscopy(DRIFTS) and time-resolved photoluminescence(TR-PL) spectroscopy are used to reveal the intermediate formation of the photocatalytic mechanism and photogenerated electron lifetime,respectively.The experimental characterizations reveal that the R-P25/In_(2)O_(3-x) composite shows a remarkable behavior for coupling C-C bonds.Besides,efficient charge separation contributes to the improved CO_(2) conversion performance of photocatalysts.This work introduces a type Ⅱ heterojunction composite photocatalyst,which promotes understanding the CO_(2) reduction mechanisms on heterojunction composites and is valuable for the development of photocatalysts. 展开更多
关键词 HETEROJUNCTION Oxygen vacancy Photocatalytic CO_(2)reduction C_(2)product Charge separation
下载PDF
Nickel-Nitrogen-Carbon(Ni-N-C)Electrocatalysts Toward CO_(2)electroreduction to CO:Advances,Optimizations,Challenges,and Prosoects
2
作者 Qingqing Pang Xizheng Fan +7 位作者 Kaihang Sun Kun Xiang Baojun Li Shufang Zhao young dok kim Qiaoyun Liu Zhongyi Liu Zhikun Peng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期160-180,共21页
Electrocatalytic reduction of CO_(2)into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems.Con... Electrocatalytic reduction of CO_(2)into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems.Constructing electrocatalyst with high activity,selectivity,stability,and low cost is really matter to realize industrial application of electrocatalytic CO_(2)reduction(ECR).Metal-nitrogen-carbon(M-N-C),especially Ni-N-C,display excellent performance,such as nearly 100%CO selectivity,high current density,outstanding tolerance,etc.,which is considered to possess broad application prospects.Based on the current research status,starting from the mechanism of ECR and the existence form of Ni active species,the latest research progress of Ni-N-C electrocatalysts in CO_(2)electroreduction is systematically summarized.An overview is emphatically interpreted on the regulatory strategies for activity optimization over Ni-N-C,including N coordination modulation,vacancy defects construction,morphology design,surface modification,heteroatom activation,and bimetallic cooperation.Finally,some urgent problems and future prospects on designing Ni-N-C catalysts for ECR are discussed.This review aims to provide the guidance for the design and development of Ni-N-C catalysts with practical application. 展开更多
关键词 active sites CO_(2)reduction electrocatalysis Ni-N-C electrocatalysts optimization strategies
下载PDF
Use of NiO/SiO_2 catalysts for toluene total oxidation:Catalytic reaction at lower temperatures and repeated regeneration
3
作者 Sang Wook Han Myung-Geun Jeong +2 位作者 Il Hee kim Hyun Ook Seo young dok kim 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期1931-1940,共10页
We deposited NiO via atomic layer deposition on mesoporous SiO2 particles with diameters of several hundred micrometers and a mean mesopore size of -14 nm.NiO was deposited within the shell region of mesoporous SiO2 p... We deposited NiO via atomic layer deposition on mesoporous SiO2 particles with diameters of several hundred micrometers and a mean mesopore size of -14 nm.NiO was deposited within the shell region of mesoporous SiO2 particles with a shell thickness of -11 mm.We annealed the as-prepared NiO/SiO2 at 450 and 600℃,respectively.These two samples were used as catalysts for the uptake of toluene molecules and their oxidative conversion to CO2.The sample annealed at450℃ was generally more reactive in toluene uptake and its subsequent conversion to CO2.When the NiO/SiO2 annealed at 450℃ was exposed to toluene vapor at 160℃ and then heated to 450℃,CO2 was emitted with almost no toluene desorption.We suggest that our catalysts can be used as building blocks for odor removal devices that operate below 200℃.These catalysts can be regularly regenerated at -450℃. 展开更多
关键词 Heterogeneous catalysis CHEMISORPTION Thermal desorption Mesoporous material Toluene oxidation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部