期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Effects of external parameters on plasma characteristics and uniformity in a dual cylindrical inductively coupled plasma
1
作者 Pengyu wang Siyu XING +5 位作者 Daoman HAN Yuru ZHANG Yong LI Cheng ZHOU Fei GAO younian wang 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期63-74,共12页
The dual cylindrical inductively coupled plasma source,compared to the conventional structure of inductively coupled plasma source,can significantly improve the uniformity of plasma.It has an enhanced potential for ap... The dual cylindrical inductively coupled plasma source,compared to the conventional structure of inductively coupled plasma source,can significantly improve the uniformity of plasma.It has an enhanced potential for application in processes,such as etching and ashing.A uniform plasma can be obtained by allowing the remote plasma from the upper chamber modulate the main plasma generated in the lower chamber.In this study,a fluid model was employed to investigate a dual cylindrical inductively coupled Ar/O_(2)discharge.The effects of external parameters on electron density,electron temperature,O atomic density,and plasma uniformity in the main chamber were studied,and the reasons were analyzed.The results of this study show that remote power can control the plasma uniformity and increase the plasma density in the main chamber.As the remote power increased,plasma uniformity improved initially and then deteriorated.The main power affected the plasma density at the edge of the main chamber and can modulate the plasma density in the main chamber.The gas pressure affected both the uniformity and density of the plasma.As the gas pressure increased,the plasma uniformity deteriorated,but the free radical density improved. 展开更多
关键词 dual inductively coupled plasma remote plasma plasma uniformity fluid model
下载PDF
Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas 被引量:1
2
作者 Wei YANG Fei GAO younian wang 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第5期118-133,共16页
A numerical model is developed to study the conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled argon plasmas at pressures of 0.1-20 Pa.The model con... A numerical model is developed to study the conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled argon plasmas at pressures of 0.1-20 Pa.The model consists of electron kinetics module,electromagnetics module,and global model module.It allows for self-consistent description of non-local electron kinetics and collisionless electron heating in terms of the conductivity of homogeneous hot plasma.Simulation results for non-local conductivity case are compared with predictions for the assumption of local conductivity case.Electron densities and effective electron temperatures under non-local and local conductivities show obvious differences at relatively low pressures.As increasing pressure,the results under the two cases of conductivities tend to converge,which indicates the transition from collisionless to collisional regimes.At relatively low pressures the local negative power absorption is predicted by non-local conductivity case but not captured by local conductivity case.The two-dimensional(2D)profiles of electron current density and electric field are coincident for local conductivity case in the pressure range of interest,but it roughly holds true for non-local conductivity case at very high pressure.In addition,an effective conductivity with consideration of non-collisional stochastic heating effect is introduced.The effective conductivity almost reproduces the electron density and effective electron temperature for the non-local conductivity case,but does not capture the non-local relation between electron current and electric field as well as the local negative power absorption that is observed for nonlocal conductivity case at low pressures. 展开更多
关键词 inductively coupled plasmas conductivity effects electron kinetics plasma parameters electromagnetic wave characteristics ELECTRODYNAMICS
下载PDF
Modulation of the plasma uniformity by coil and dielectric window structures in an inductively coupled plasma 被引量:1
3
作者 Xiaoyan SUN Yuru ZHANG +2 位作者 Jing YE younian wang Jianxin HE 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第9期111-122,共12页
The effects of coil and dielectric window structures on the plasma distribution are examined in a cylindrically symmetric planar inductively coupled plasma(ICP).A two-dimensional(2 D)fluid model is employed to investi... The effects of coil and dielectric window structures on the plasma distribution are examined in a cylindrically symmetric planar inductively coupled plasma(ICP).A two-dimensional(2 D)fluid model is employed to investigate the design issues of ICP source for etching.When the gradient coil structure is applied at 400 W and 20 mTorr,the ionization rate caused by the power deposition decreases at the reactor center as compared to that in a reactor with a planar coil above the planar dielectric window,and a rather uniform plasma is obtained.However,for the vertical coil geometry,all the coils move to the position of the outermost coil,and the peaks of the power deposition and ionization rate appear at the radial edge of the substrate.In this case,the plasma density is characterized by an edge-high profile.Further,it is observed that the plasma uniformity is improved by increasing the source power under a gas pressure of 20 mTorr and becomes better when the gas pressure increases to 30 mTorr with the source power being fixed at400 W in the gradient coil configuration,but the uniformity of plasma worsens with the rising source power or pressure due to the strong localization in the vertical coil geometry.Moreover,when the discharge is sustained in a reactor with a stepped dielectric window at r=0.135 m,the best plasma uniformity is obtained at 400 W and 20 m Torr because the ionization rate is enhanced at the outermost coil,and the dielectric window at r=0.135 m blocks the diffusion of plasma towards the axis.In addition,higher source power and lower gas pressure produce more uniform plasma for the designs with a stepped window near the symmetry axis.When the dielectric window is stepped at r=0.135 m,the non-uniformity of plasma initially decreases and then increases with the increase in source power or gas pressure.When the dielectric window is stepped at the radial edge of the chamber,the plasma uniformity is improved by increasing the source power and gas pressure due to the enhanced ionization at the larger radius caused by the severe localization. 展开更多
关键词 fluid simulation gradient coil vertical coil stepped dielectric window plasma uniformity
下载PDF
Review of stopping power and Coulomb explosion for molecular ion in plasmas 被引量:1
4
作者 Guiqiu wang He Yi +8 位作者 Yujiao Li Yaochuan wang Dajun Liu Fei Gao Wei Liu Jieru Ren Xing wang Yongtao Zhao younian wang 《Matter and Radiation at Extremes》 SCIE EI CAS 2018年第2期67-77,共11页
We summarize our theoretical studies for stopping power of energetic heavy ion,diatomic molecular ions and small clusters penetrating through plasmas.As a relevant research field for the heavy ion inertial confinement... We summarize our theoretical studies for stopping power of energetic heavy ion,diatomic molecular ions and small clusters penetrating through plasmas.As a relevant research field for the heavy ion inertial confinement fusion(HICF),we lay the emphasis on the dynamic po-larization and correlation effects of the constituent ion within the molecular ion and cluster for stopping power in order to disclose the role of the vicinage effect on the Coulomb explosion and energy deposition of molecules and clusters in plasma.On the other hand,as a promising scheme for ICF,both a strong laser field and an intense ion beam are used to irradiate a plasma target.So the influence of a strong laser field on stopping power is significant.We discussed a large range of laser and plasma parameters on the coulomb explosion and stopping power for correlated-ion cluster and C 60 cluster.Furthermore,in order to indicate the effects of different cluster types and sizes on the stopping power,a comparison is made for hydrogen and carbon clusters.In addition,the deflection of molecular axis for diatomic molecules during the Coulomb explosion is also given for the cases both in the presence of a laser field and laser free.Finally,a future experimental scheme is put forward to measure molecular ion stopping power in plasmas in Xi’an Jiaotong University of China. 展开更多
关键词 MOLECULES Stopping power Coulomb explosion Vicinage effect LASER
下载PDF
Influence of magnetic filter field on the radio-frequency negative hydrogen ion source of neutral beam injector for China Fusion Engineering Test Reactor 被引量:1
5
作者 Yingjie wang Jiawei HUANG +2 位作者 Yuru ZHANG Fei GAO younian wang 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第11期185-192,共8页
In the design of negative hydrogen ion sources,a magnetic filter field of tens of Gauss at the expansion region is essential to reduce the electron temperature,which usually results in a magnetic field of around 10 Ga... In the design of negative hydrogen ion sources,a magnetic filter field of tens of Gauss at the expansion region is essential to reduce the electron temperature,which usually results in a magnetic field of around 10 Gauss in the driver region,destabilizing the discharge.The magnetic shield technique is proposed in this work to reduce the magnetic field in the driver region and improve the discharge characteristics.In this paper,a three-dimensional fluid model is developed within COMSOL to study the influence of the magnetic shield on the generation and transport of plasmas in the negative hydrogen ion source.It is found that when the magnetic shield material is applied at the interface of the expansion region and the driver region,the electron density can be effectively increased.For instance,the maximum of the electron density is 6.7×10^(17)m^(-3)in the case without the magnetic shield,and the value increases to 9.4×10^(17)m^(-3)when the magnetic shield is introduced. 展开更多
关键词 radio-frequency negative hydrogen ion sources three-dimensional fluid model neutral beam injection
下载PDF
Simulations of standing wave effect,stop band effect,and skin effect in large-area very high frequency symmetric capacitive discharges 被引量:1
6
作者 Jiankai LIU Yuru ZHANG +2 位作者 Kai ZHAO Deqi WEN younian wang 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第3期82-92,共11页
In this paper,Maxwell equations are coupled with a radially localized global model and an analytical sheath model to investigate the electromagnetic effects under various frequencies and electron powers in large-area ... In this paper,Maxwell equations are coupled with a radially localized global model and an analytical sheath model to investigate the electromagnetic effects under various frequencies and electron powers in large-area very high frequency symmetric capacitive argon discharges.Simulation results indicate that both the vacuum wavelength and the sheath width decrease with frequency,leading to the reduced surface wavelength.As a result,the standing wave effect becomes pronounced,causing the fact that the radial profiles of the electron density,radio frequency voltage,and sheath width shift from uniform over center-high to multiple-node.When the frequency is close to or higher than the series resonance frequency,the surface waves cannot propagate to the radial center because of the significant radial damping.Due to the lack of power deposition near the radial center,the electron density is nearly zero there,i.e.the stop band effect.As power increases,the higher electron density leads to the decrease of the skin depth.Therefore,the importance of the skin effect gradually exceeds that of the standing wave effect,giving rise to the transition from the center-high to edge-high electron density profiles.The method proposed in this work could help to predict the plasma distribution under different discharge conditions in a few minutes,which is of significant importance in optimizing the plasma processing. 展开更多
关键词 electromagnetic effects hybrid model plasma uniformity
下载PDF
Experimental investigation of the electromagnetic effect and improvement of the plasma radial uniformity in a large-area,very-high frequency capacitive argon discharge 被引量:1
7
作者 Daoman HAN Zixuan SU +3 位作者 Kai ZHAO Yongxin LIU Fei GAO younian wang 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第5期66-74,共9页
We performed an experimental investigation on the electromagnetic effect and the plasma radial uniformity in a larger-area, cylindrical capacitively coupled plasma reactor. By utilizing a floating hairpin probe, depen... We performed an experimental investigation on the electromagnetic effect and the plasma radial uniformity in a larger-area, cylindrical capacitively coupled plasma reactor. By utilizing a floating hairpin probe, dependences of the plasma radial density on the driving frequency and the radio-frequency power over a wide pressure range of 5-40 Pa were presented. At a relatively low frequency(LF, e.g. 27 MHz), an evident peak generally appears near the electrode edge for all pressures investigated here due to the edge field effect, while at a very high frequency(VHF, e.g.60 or 100 MHz), the plasma density shows a sharp peak at the discharge center at lower pressures, indicating a strong standing wave effect. As the RF power increases, the center-peak structure of plasma density becomes more evident. With increasing the pressure, the standing wave effect is gradually overwhelmed by the ‘stop band’ effect, resulting in a transition in the plasma density profile from a central peak to an edge peak. To improve the plasma radial uniformity, a LF source is introduced into the VHF plasma by balancing the standing wave effect with the edge effect. A much better plasma uniformity can be obtained if one chooses appropriate LF powers, pressures and other corresponding discharge parameters. 展开更多
关键词 electromagnetic effect plasma radial uniformity very-high-frequency capacitively coupled plasmas
下载PDF
Multi-layer structure formation of relativistic electron beams in plasmas
8
作者 Xiaojuan wang Zhanghu HU younian wang 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第2期10-16,共7页
A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas.We show here the formation of the multi-la... A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas.We show here the formation of the multi-layer structure of the relativistic electron beam in the plasma due to the different betatron frequency from the beam front to the beam tail.Meanwhile,the nonuniformity of the longitudinal wakefield is the essential reason for the multi-layer structure formation in beam phase space.The influences of beam parameters(beam radius and transverse density profile)on the formation of the multi-layer structure and collective stopping in background plasmas are also considered. 展开更多
关键词 multi-layer structure beam phase space relativistic electron beam plasma based beam dump PIC
下载PDF
High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma
9
作者 wangwen XU Zhanghu HU +1 位作者 Dexuan HUI younian wang 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第5期75-79,共5页
The study of the interaction between ion beam and plasma is very important to the areas of inertial fusion energy and high energy density physics. With detailed one-dimensional electromagnetic particle-in-cell simulat... The study of the interaction between ion beam and plasma is very important to the areas of inertial fusion energy and high energy density physics. With detailed one-dimensional electromagnetic particle-in-cell simulations, we investigate here the interaction of a laseraccelerated proton beam assuming an ideal monoenergetic beam with a gas-discharge plasma.After the saturation stage of the two-stream instability excited by the proton beam, significant high energy electrons are observed, with maximum energy approaching 2 MeV, and a new twostream instability occurs between the high energy electrons and background electrons. The trajectories of plasma electrons are studied, showing the process of electron trapping and detrapping from the wakefield. 展开更多
关键词 electron beam proton beam two-stream instability particle-in-cell simulation
下载PDF
Magnetic probe diagnostics of nonlinear standing waves and bulk ohmic electron power absorption in capacitive discharges
10
作者 Kai ZHAO Yongxin LIU +2 位作者 Quanzhi ZHANG Demetre J ECONOMOU younian wang 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第11期74-83,共10页
It is recognized that standing wave effects appearing in large-area,very-high-frequency capacitively coupled plasma(CCP)reactors cause center-high plasma non-uniformity.Using a high-frequency magnetic probe,we present... It is recognized that standing wave effects appearing in large-area,very-high-frequency capacitively coupled plasma(CCP)reactors cause center-high plasma non-uniformity.Using a high-frequency magnetic probe,we present a direct experimental diagnostic of the nonlinear standing waves and bulk ohmic electron power absorption dynamics in low pressure CCP discharges for different driving frequencies of 13.56,30,and 60 MHz.The design,principle,calibration,and validation of the probe are described in detail.Spatial structures of the harmonics of the magnetic field,determined by the magnetic probe,were used to calculate the distributions of the harmonic current and the corresponding ohmic electron power deposition,providing insights into the behavior of nonlinear harmonics.At a low driving frequency,i.e.13.56 MHz,no remarkable nonlinear standing waves were identified and the bulk ohmic electron power absorption was observed to be negligible.The harmonic magnetic field/current was found to increase dramatically with the driving frequency,due to decreased sheath reactance and more remarkable nonlinear standing waves at a higher driving frequency,leading to the enhancements of the ohmic heating and the plasma density in the bulk,specifically at the electrode center.At a high driving frequency,i.e.60 MHz,the high-order harmonic current density and the corresponding ohmic electron power absorption exhibited a similar node structure,with the main peak on axis,and one or more minor peaks between the electrode center and the edge,contributing to the center-high profile of the plasma density. 展开更多
关键词 capacitively coupled plasmas magnetic probe nonlinear standing waves ohmic heating
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部