Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect...Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.展开更多
Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease ...Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease is hard to control because wind,rain,and insects carry spores.Colombian researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93%accuracy using a random forest method.If the dataset is too small and noisy,the algorithm may not learn data patterns and generate accurate predictions.To overcome the existing challenge,early detection of Colletotrichum Kahawae disease in coffee cherries requires automated processes,prompt recognition,and accurate classifications.The proposed methodology selects CBD image datasets through four different stages for training and testing.XGBoost to train a model on datasets of coffee berries,with each image labeled as healthy or diseased.Once themodel is trained,SHAP algorithmto figure out which features were essential formaking predictions with the proposed model.Some of these characteristics were the cherry’s colour,whether it had spots or other damage,and how big the Lesions were.Virtual inception is important for classification to virtualize the relationship between the colour of the berry is correlated with the presence of disease.To evaluate themodel’s performance andmitigate excess fitting,a 10-fold cross-validation approach is employed.This involves partitioning the dataset into ten subsets,training the model on each subset,and evaluating its performance.In comparison to other contemporary methodologies,the model put forth achieved an accuracy of 98.56%.展开更多
Autism spectrum disorder(ASD)can be defined as a neurodevelopmental condition or illness that can disturb kids who have heterogeneous characteristics,like changes in behavior,social disabilities,and difficulty communi...Autism spectrum disorder(ASD)can be defined as a neurodevelopmental condition or illness that can disturb kids who have heterogeneous characteristics,like changes in behavior,social disabilities,and difficulty communicating with others.Eye tracking(ET)has become a useful method to detect ASD.One vital aspect of moral erudition is the aptitude to have common visual attention.The eye-tracking approach offers valuable data regarding the visual behavior of children for accurate and early detection.Eye-tracking data can offer insightful information about the behavior and thought processes of people with ASD,but it is important to be aware of its limitations and to combine it with other types of data and assessment techniques to increase the precision of ASD detection.It operates by scanning the paths of eyes for extracting a series of eye projection points on images for examining the behavior of children with autism.The purpose of this research is to use deep learning to identify autistic disorders based on eye tracking.The Chaotic Butterfly Optimization technique is used to identify this specific disturbance.Therefore,this study develops an ET-based Autism Spectrum Disorder Diagnosis using Chaotic Butterfly Optimization with Deep Learning(ETASD-CBODL)technique.The presented ETASDCBODL technique mainly focuses on the recognition of ASD via the ET and DL models.To accomplish this,the ETASD-CBODL technique exploits the U-Net segmentation technique to recognize interested AREASS.In addition,the ETASD-CBODL technique employs Inception v3 feature extraction with CBO algorithm-based hyperparameter optimization.Finally,the long-shorttermmemory(LSTM)model is exploited for the recognition and classification of ASD.To assess the performance of the ETASD-CBODL technique,a series of simulations were performed on datasets from the figure-shared data repository.The experimental values of accuracy(99.29%),precision(98.78%),sensitivity(99.29%)and specificity(99.29%)showed a better performance in the ETASD-CBODL technique over recent approaches.展开更多
Automated segmentation of brain tumors using Magnetic Resonance Imaging(MRI)data is critical in the analysis and monitoring of disease development.As a result,gliomas are aggressive and diverse tumors that may be spli...Automated segmentation of brain tumors using Magnetic Resonance Imaging(MRI)data is critical in the analysis and monitoring of disease development.As a result,gliomas are aggressive and diverse tumors that may be split into intra-tumoral groups by using effective and accurate segmentation methods.It is intended to extract characteristics from an image using the Gray Level Co-occurrence(GLC)matrix feature extraction method described in the proposed work.Using Convolutional Neural Networks(CNNs),which are commonly used in biomedical image segmentation,CNNs have significantly improved the precision of the state-of-the-art segmentation of a brain tumor.Using two segmentation networks,a U-Net and a 3D CNN,we present a major yet easy combinative technique that results in improved and more precise estimates.The U-Net and 3D CNN are used together in this study to get better and more accurate estimates of what is going on.Using the dataset,two models were developed and assessed to provide segmentation maps that differed fundamentally in terms of the segmented tumour sub-region.Then,the estimates was made by two separate models that were put together to produce the final prediction.In comparison to current state-of-the-art designs,the precision(percentage)was 98.35,98.5,and 99.4 on the validation set for tumor core,enhanced tumor,and whole tumor,respectively.展开更多
Mobile Ad Hoc Networks(MANET)is the framework for social networking with a realistic framework.In theMANETenvironment,based on the query,information is transmitted between the sender and receiver.In the MANET network,...Mobile Ad Hoc Networks(MANET)is the framework for social networking with a realistic framework.In theMANETenvironment,based on the query,information is transmitted between the sender and receiver.In the MANET network,the nodes within the communication range are involved in data transmission.Even the nodes that lie outside of the communication range are involved in the transmission of relay messages.However,due to the openness and frequent mobility of nodes,they are subjected to the vast range of security threats inMANET.Hence,it is necessary to develop an appropriate security mechanism for the dataMANET environment for data transmission.This paper proposed a security framework for the MANET network signature escrow scheme.The proposed framework uses the centralised Software Defined Network(SDN)with an ECC cryptographic technique.The developed security framework is stated as Escrow Elliptical Curve Cryptography SDN(EsECC_SDN)for attack detection and classification.The developed EsECC-SDN was adopted in two stages for attack classification and detection:(1)to perform secure data transmission between nodes SDN performs encryption and decryption of the data;and(2)to detect and classifies the attack in theMANET hyper alert based HiddenMarkovModel Transductive Deep Learning.Furthermore,the EsECC_SDN is involved in the assignment of labels in the transmitted data in the database(DB).The escrow handles these processes,and attacks are evaluated using the hyper alert.The labels are assigned based on the k-medoids attack clustering through label assignment through a transductive deep learning model.The proposed model uses the CICIDS dataset for attack detection and classification.The developed framework EsECC_SDN’s performance is compared to that of other classifiers such as AdaBoost,Regression,and Decision Tree.The performance of the proposed EsECC_SDN exhibits∼3%improved performance compared with conventional techniques.展开更多
Software needs modifications and requires revisions regularly.Owing to these revisions,retesting software becomes essential to ensure that the enhancements made,have not affected its bug-free functioning.The time and ...Software needs modifications and requires revisions regularly.Owing to these revisions,retesting software becomes essential to ensure that the enhancements made,have not affected its bug-free functioning.The time and cost incurred in this process,need to be reduced by the method of test case selection and prioritization.It is observed that many nature-inspired techniques are applied in this area.African Buffalo Optimization is one such approach,applied to regression test selection and prioritization.In this paper,the proposed work explains and proves the applicability of the African Buffalo Optimization approach to test case selection and prioritization.The proposed algorithm converges in polynomial time(O(n^(2))).In this paper,the empirical evaluation of applying African Buffalo Optimization for test case prioritization is done on sample data set with multiple iterations.An astounding 62.5%drop in size and a 48.57%drop in the runtime of the original test suite were recorded.The obtained results are compared with Ant Colony Optimization.The comparative analysis indicates that African Buffalo Optimization and Ant Colony Optimization exhibit similar fault detection capabilities(80%),and a reduction in the overall execution time and size of the resultant test suite.The results and analysis,hence,advocate and encourages the use of African Buffalo Optimization in the area of test case selection and prioritization.展开更多
Unmanned aerial vehicles(UAVs),or drones,have revolutionized a wide range of industries,including monitoring,agriculture,surveillance,and supply chain.However,their widespread use also poses significant challenges,suc...Unmanned aerial vehicles(UAVs),or drones,have revolutionized a wide range of industries,including monitoring,agriculture,surveillance,and supply chain.However,their widespread use also poses significant challenges,such as public safety,privacy,and cybersecurity.Cyberattacks,targetingUAVs have become more frequent,which highlights the need for robust security solutions.Blockchain technology,the foundation of cryptocurrencies has the potential to address these challenges.This study suggests a platform that utilizes blockchain technology tomanage drone operations securely and confidentially.By incorporating blockchain technology,the proposed method aims to increase the security and privacy of drone data.The suggested platform stores information on a public blockchain located on Ethereum and leverages the Ganache platform to ensure secure and private blockchain transactions.TheMetaMask wallet for Ethbalance is necessary for BCT transactions.The present research finding shows that the proposed approach’s efficiency and security features are superior to existing methods.This study contributes to the development of a secure and efficient system for managing drone operations that could have significant applications in various industries.The proposed platform’s security measures could mitigate privacy concerns,minimize cyber security risk,and enhance public safety,ultimately promoting the widespread adoption of UAVs.The results of the study demonstrate that the blockchain can ensure the fulfillment of core security needs such as authentication,privacy preservation,confidentiality,integrity,and access control.展开更多
Sentiment Analysis(SA)is often referred to as opinion mining.It is defined as the extraction,identification,or characterization of the sentiment from text.Generally,the sentiment of a textual document is classified in...Sentiment Analysis(SA)is often referred to as opinion mining.It is defined as the extraction,identification,or characterization of the sentiment from text.Generally,the sentiment of a textual document is classified into binary classes i.e.,positive and negative.However,fine-grained classification provides a better insight into the sentiments.The downside is that fine-grained classification is more challenging as compared to binary.On the contrary,performance deteriorates significantly in the case of multi-class classification.In this study,pre-processing techniques and machine learning models for the multi-class classification of sentiments were explored.To augment the performance,a multi-layer classification model has been proposed.Owing to similitude with social media text,the movie reviews dataset has been used for the implementation.Supervised machine learning models namely Decision Tree,Support Vector Machine,and Naive Bayes models have been implemented for the task of sentiment classification.We have compared the models of single-layer architecture with multi-tier model.The results of Multi-tier model have slight improvement over the single-layer architecture.Moreover,multi-tier models have better recall which allow our proposed model to learn more context.We have discussed certain shortcomings of the model that will help researchers to design multi-tier models with more contextual information.展开更多
Recently,wireless sensor networks(WSNs)find their applicability in several real-time applications such as disaster management,military,surveillance,healthcare,etc.The utilization of WSNs in the disaster monitoring pro...Recently,wireless sensor networks(WSNs)find their applicability in several real-time applications such as disaster management,military,surveillance,healthcare,etc.The utilization of WSNs in the disaster monitoring process has gained significant attention among research communities and governments.Real-time monitoring of disaster areas using WSN is a challenging process due to the energy-limited sensor nodes.Therefore,the clustering process can be utilized to improve the energy utilization of the nodes and thereby improve the overall functioning of the network.In this aspect,this study proposes a novel Lens-Oppositional Wild Goose Optimization based Energy Aware Clustering(LOWGO-EAC)scheme for WSN-assisted real-time disaster management.The major intention of the LOWGO-EAC scheme is to perform effective data collection and transmission processes in disaster regions.To achieve this,the LOWGOEAC technique derives a novel LOWGO algorithm by the integration of the lens oppositional-based learning(LOBL)concept with the traditional WGO algorithm to improve the convergence rate.In addition,the LOWGO-EAC technique derives a fitness function involving three input parameters like residual energy(RE),distance to the base station(BS)(DBS),and node degree(ND).The proposed LOWGO-EAC technique can accomplish improved energy efficiency and lifetime of WSNs in real-time disaster management scenarios.The experimental validation of the LOWGO-EAC model is carried out and the comparative study reported the enhanced performance of the LOWGO-EAC model over the recent approaches.展开更多
High precision and reliable wind speed forecasting have become a challenge for meteorologists.Convective events,namely,strong winds,thunderstorms,and tornadoes,along with large hail,are natural calamities that disturb...High precision and reliable wind speed forecasting have become a challenge for meteorologists.Convective events,namely,strong winds,thunderstorms,and tornadoes,along with large hail,are natural calamities that disturb daily life.For accurate prediction of wind speed and overcoming its uncertainty of change,several prediction approaches have been presented over the last few decades.As wind speed series have higher volatility and nonlinearity,it is urgent to present cutting-edge artificial intelligence(AI)technology.In this aspect,this paper presents an intelligent wind speed prediction using chicken swarm optimization with the hybrid deep learning(IWSP-CSODL)method.The presented IWSP-CSODL model estimates the wind speed using a hybrid deep learning and hyperparameter optimizer.In the presented IWSP-CSODL model,the prediction process is performed via a convolutional neural network(CNN)based long short-term memory with autoencoder(CBLSTMAE)model.To optimally modify the hyperparameters related to the CBLSTMAE model,the chicken swarm optimization(CSO)algorithm is utilized and thereby reduces the mean square error(MSE).The experimental validation of the IWSP-CSODL model is tested using wind series data under three distinct scenarios.The comparative study pointed out the better outcomes of the IWSP-CSODL model over other recent wind speed prediction models.展开更多
An abnormality that develops in white blood cells is called leukemia.The diagnosis of leukemia is made possible by microscopic investigation of the smear in the periphery.Prior training is necessary to complete the mo...An abnormality that develops in white blood cells is called leukemia.The diagnosis of leukemia is made possible by microscopic investigation of the smear in the periphery.Prior training is necessary to complete the morphological examination of the blood smear for leukemia diagnosis.This paper proposes a Histogram Threshold Segmentation Classifier(HTsC)for a decision support system.The proposed HTsC is evaluated based on the color and brightness variation in the dataset of blood smear images.Arithmetic operations are used to crop the nucleus based on automated approximation.White Blood Cell(WBC)segmentation is calculated using the active contour model to determine the contrast between image regions using the color transfer approach.Through entropy-adaptive mask generation,WBCs accurately detect the circularity region for identification of the nucleus.The proposed HTsC addressed the cytoplasm region based on variations in size and shape concerning addition and rotation operations.Variation in WBC imaging characteristics depends on the cytoplasmic and nuclear regions.The computation of the variation between image features in the cytoplasm and nuclei regions of the WBCs is used to classify blood smear images.The classification of the blood smear is performed with conventional machine-learning techniques integrated with the features of the deep-learning regression classifier.The designed HTsC classifier comprises the binary classifier with the classification of the lymphocytes,monocytes,neutrophils,eosinophils,and abnormalities in the WBCs.The proposed HTsC identifies the abnormal activity in the WBC,considering the color and shape features.It exhibits a higher classification accuracy value of 99.6%when combined with the other classifiers.The comparative analysis expressed that the proposed HTsC model exhibits an overall accuracy value of 98%,which is approximately 3%–12%higher than the conventional technique.展开更多
Leukemia,often called blood cancer,is a disease that primarily affects white blood cells(WBCs),which harms a person’s tissues and plasma.This condition may be fatal when if it is not diagnosed and recognized at an ea...Leukemia,often called blood cancer,is a disease that primarily affects white blood cells(WBCs),which harms a person’s tissues and plasma.This condition may be fatal when if it is not diagnosed and recognized at an early stage.The physical technique and lab procedures for Leukaemia identification are considered time-consuming.It is crucial to use a quick and unexpected way to identify different forms of Leukaemia.Timely screening of the morphologies of immature cells is essential for reducing the severity of the disease and reducing the number of people who require treatment.Various deep-learning(DL)model-based segmentation and categorization techniques have already been introduced,although they still have certain drawbacks.In order to enhance feature extraction and classification in such a practical way,Mayfly optimization with Generative Adversarial Network(MayGAN)is introduced in this research.Furthermore,Generative Adversarial System(GAS)is integrated with Principal Component Analysis(PCA)in the feature-extracted model to classify the type of blood cancer in the data.The semantic technique and morphological procedures using geometric features are used to segment the cells that makeup Leukaemia.Acute lymphocytic Leukaemia(ALL),acute myelogenous Leukaemia(AML),chronic lymphocytic Leukaemia(CLL),chronic myelogenous Leukaemia(CML),and aberrant White Blood Cancers(WBCs)are all successfully classified by the proposed MayGAN model.The proposed MayGAN identifies the abnormal activity in the WBC,considering the geometric features.Compared with the state-of-the-art methods,the proposed MayGAN achieves 99.8%accuracy,98.5%precision,99.7%recall,97.4%F1-score,and 98.5%Dice similarity coefficient(DSC).展开更多
Mobile Ad Hoc Network(MANET)is an infrastructure-less network that is comprised of a set of nodes that move randomly.In MANET,the overall performance is improved through multipath multicast routing to achieve the qual...Mobile Ad Hoc Network(MANET)is an infrastructure-less network that is comprised of a set of nodes that move randomly.In MANET,the overall performance is improved through multipath multicast routing to achieve the quality of service(quality of service).In this,different nodes are involved in the information data collection and transmission to the destination nodes in the network.The different nodes are combined and presented to achieve energy-efficient data transmission and classification of the nodes.The route identification and routing are established based on the data broadcast by the network nodes.In transmitting the data packet,evaluating the data delivery ratio is necessary to achieve optimal data transmission in the network.Furthermore,energy consumption and overhead are considered essential factors for the effective data transmission rate and better data delivery rate.In this paper,a Gradient-Based Energy Optimization model(GBEOM)for the route in MANET is proposed to achieve an improved data delivery rate.Initially,the Weighted Multi-objective Cluster-based Spider Monkey Load Balancing(WMC-SMLB)technique is utilized for obtaining energy efficiency and load balancing routing.The WMC algorithm is applied to perform an efficient node clustering process from the considered mobile nodes in MANET.Load balancing efficiency is improved with a higher data delivery ratio and minimum routing overhead based on the residual energy and bandwidth estimation.Next,the Gradient Boosted Multinomial ID3 Classification algorithm is applied to improve the performance of multipath multicast routing in MANET with minimal energy consumption and higher load balancing efficiency.The proposed GBEOM exhibits∼4%improved performance in MANET routing.展开更多
A new secured database management system architecture using intrusion detection systems(IDS)is proposed in this paper for organizations with no previous role mapping for users.A simple representation of Structured Que...A new secured database management system architecture using intrusion detection systems(IDS)is proposed in this paper for organizations with no previous role mapping for users.A simple representation of Structured Query Language queries is proposed to easily permit the use of the worked clustering algorithm.A new clustering algorithm that uses a tube search with adaptive memory is applied to database log files to create users’profiles.Then,queries issued for each user are checked against the related user profile using a classifier to determine whether or not each query is malicious.The IDS will stop query execution or report the threat to the responsible person if the query is malicious.A simple classifier based on the Euclidean distance is used and the issued query is transformed to the proposed simple representation using a classifier,where the Euclidean distance between the centers and the profile’s issued query is calculated.A synthetic data set is used for our experimental evaluations.Normal user access behavior in relation to the database is modelled using the data set.The false negative(FN)and false positive(FP)rates are used to compare our proposed algorithm with other methods.The experimental results indicate that our proposed method results in very small FN and FP rates.展开更多
:Social media data are rapidly increasing and constitute a source of user opinions and tips on a wide range of products and services.The increasing availability of such big data on biased reviews and blogs creates cha...:Social media data are rapidly increasing and constitute a source of user opinions and tips on a wide range of products and services.The increasing availability of such big data on biased reviews and blogs creates challenges for customers and businesses in reviewing all content in their decision-making process.To overcome this challenge,extracting suggestions from opinionated text is a possible solution.In this study,the characteristics of suggestions are analyzed and a suggestion mining extraction process is presented for classifying suggestive sentences from online customers’reviews.A classification using a word-embedding approach is used via the XGBoost classifier.The two datasets used in this experiment relate to online hotel reviews and Microsoft Windows App Studio discussion reviews.F1,precision,recall,and accuracy scores are calculated.The results demonstrated that the XGBoost classifier outperforms—with an accuracy of more than 80%.Moreover,the results revealed that suggestion keywords and phrases are the predominant features for suggestion extraction.Thus,this study contributes to knowledge and practice by comparing feature extraction classifiers and identifying XGBoost as a better suggestion mining process for identifying online reviews.展开更多
Network security and energy consumption are deemed to be two important components of wireless and mobile ad hoc networks(WMANets).There are various routing attacks which harm Ad Hoc networks.This is because of the uns...Network security and energy consumption are deemed to be two important components of wireless and mobile ad hoc networks(WMANets).There are various routing attacks which harm Ad Hoc networks.This is because of the unsecure wireless communication,resource constrained capabilities and dynamic topology.In order to cope with these issues,Ad Hoc On-Demand Distance Vector(AODV)routing protocol can be used to remain the normal networks functionality and to adjust data transmission by defending the networks against black hole attacks.The proposed system,in this work,identifies the optimal route from sender to collector,prioritizing the number of jumps,the battery life,and security,which are fundamental prerequisites.Researches have proposed various plans for detecting the shortest route,as well as ensuring energy conversions and defense against threats and attacks.In this regard,the packet drop attack is one of the most destructive attack against WMANet communication and hence merits special attention.This type of attack may allow the attacker to take control of the attacked hubs,which may lost packets or transmitted information via a wrong route during the packets journey from a source hub to a target one.Hence,a new routing protocol method has been proposed in this study.It applies the concept of energy saving systems to conserve energy that is not required by the system.The proposed method for energy aware detection and prevention of packet drop attacks in mobile ad hoc networks is termed the Ad Hoc On-Demand and Distance Vector–Packet Drop Battling Mechanism(AODV–PDBM).展开更多
A major issue while building web applications is proper input validation and sanitization.Attackers can quickly exploit errors and vulnerabilities that lead to malicious behavior in web application validation operatio...A major issue while building web applications is proper input validation and sanitization.Attackers can quickly exploit errors and vulnerabilities that lead to malicious behavior in web application validation operations.Attackers are rapidly improving their capabilities and technologies and now focus on exploiting vulnerabilities in web applications and compromising confidentiality.Cross-site scripting(XSS)and SQL injection attack(SQLIA)are attacks in which a hacker sends malicious inputs(cheat codes)to confuse a web application,to access or disable the application’s back-end without user awareness.In this paper,we explore the problem of detecting and removing bugs from both client-side and server-side code.A new idea that allows assault detection and prevention using the input validation mechanism is introduced.In addition,the project supports web security tests by providing easy-to-use and accurate models of vulnerability prediction and methods for validation.If these attributes imply a program statement that is vulnerable in an SQLIA,this can be evaluated and checked for a set of static code attributes.Additionally,we provide a script whitelisting interception layer built into the browser’s JavaScript engine,where the SQLIA is eventually detected and the XSS attack resolved using the method of input validation and script whitelisting under pushdown automatons.This framework was tested under a scenario of an SQL attack and XSS.It is demonstrated to offer an extensive improvement over the current framework.The framework’s main ability lies in the decrease of bogus positives.It has been demonstrated utilizing new methodologies,nevertheless giving unique access to sites dependent on the peculiarity score related to web demands.Our proposed input validation framework is shown to identify all anomalies and delivers better execution in contrast with the current program.展开更多
The mission of classifying remote sensing pictures based on their contents has a range of applications in a variety of areas.In recent years,a lot of interest has been generated in researching remote sensing image sce...The mission of classifying remote sensing pictures based on their contents has a range of applications in a variety of areas.In recent years,a lot of interest has been generated in researching remote sensing image scene classification.Remote sensing image scene retrieval,and scene-driven remote sensing image object identification are included in the Remote sensing image scene understanding(RSISU)research.In the last several years,the number of deep learning(DL)methods that have emerged has caused the creation of new approaches to remote sensing image classification to gain major breakthroughs,providing new research and development possibilities for RS image classification.A new network called Pass Over(POEP)is proposed that utilizes both feature learning and end-to-end learning to solve the problem of picture scene comprehension using remote sensing imagery(RSISU).This article presents a method that combines feature fusion and extraction methods with classification algorithms for remote sensing for scene categorization.The benefits(POEP)include two advantages.The multi-resolution feature mapping is done first,using the POEP connections,and combines the several resolution-specific feature maps generated by the CNN,resulting in critical advantages for addressing the variation in RSISU data sets.Secondly,we are able to use Enhanced pooling tomake the most use of themulti-resolution feature maps that include second-order information.This enablesCNNs to better cope with(RSISU)issues by providing more representative feature learning.The data for this paper is stored in a UCI dataset with 21 types of pictures.In the beginning,the picture was pre-processed,then the features were retrieved using RESNET-50,Alexnet,and VGG-16 integration of architectures.After characteristics have been amalgamated and sent to the attention layer,after this characteristic has been fused,the process of classifying the data will take place.We utilize an ensemble classifier in our classification algorithm that utilizes the architecture of a Decision Tree and a Random Forest.Once the optimum findings have been found via performance analysis and comparison analysis.展开更多
Fruit classification is found to be one of the rising fields in computer and machine vision.Many deep learning-based procedures worked out so far to classify images may have some ill-posed issues.The performance of th...Fruit classification is found to be one of the rising fields in computer and machine vision.Many deep learning-based procedures worked out so far to classify images may have some ill-posed issues.The performance of the classification scheme depends on the range of captured images,the volume of features,types of characters,choice of features from extracted features,and type of classifiers used.This paper aims to propose a novel deep learning approach consisting of Convolution Neural Network(CNN),Recurrent Neural Network(RNN),and Long Short-TermMemory(LSTM)application to classify the fruit images.Classification accuracy depends on the extracted and selected optimal features.Deep learning applications CNN,RNN,and LSTM were collectively involved to classify the fruits.CNN is used to extract the image features.RNN is used to select the extracted optimal features and LSTM is used to classify the fruits based on extracted and selected images features by CNN and RNN.Empirical study shows the supremacy of proposed over existing Support Vector Machine(SVM),Feed-forwardNeural Network(FFNN),and Adaptive Neuro-Fuzzy Inference System(ANFIS)competitive techniques for fruit images classification.The accuracy rate of the proposed approach is quite better than the SVM,FFNN,and ANFIS schemes.It has been concluded that the proposed technique outperforms existing schemes.展开更多
Software crowdsourcing(SW CS)is an evolving software development paradigm,in which crowds of people are asked to solve various problems through an open call(with the encouragement of prizes for the top solutions).Beca...Software crowdsourcing(SW CS)is an evolving software development paradigm,in which crowds of people are asked to solve various problems through an open call(with the encouragement of prizes for the top solutions).Because of its dynamic nature,SW CS has been progressively accepted and adopted in the software industry.However,issues pertinent to the understanding of requirements among crowds of people and requirements engineers are yet to be clarified and explained.If the requirements are not clear to the development team,it has a significant effect on the quality of the software product.This study aims to identify the potential challenges faced by requirements engineers when conducting the SW–CS based requirements engineering(RE)process.Moreover,solutions to overcome these challenges are also identified.Qualitative data analysis is performed on the interview data collected from software industry professionals.Consequently,20 SW–CS based RE challenges and their subsequent proposed solutions are devised,which are further grouped under seven categories.This study is beneficial for academicians,researchers and practitioners by providing detailed SW–CS based RE challenges and subsequent solutions that could eventually guide them to understand and effectively implement RE in SW CS.展开更多
文摘Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
基金support from the Deanship for Research&Innovation,Ministry of Education in Saudi Arabia,under the Auspices of Project Number:IFP22UQU4281768DSR122.
文摘Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease is hard to control because wind,rain,and insects carry spores.Colombian researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93%accuracy using a random forest method.If the dataset is too small and noisy,the algorithm may not learn data patterns and generate accurate predictions.To overcome the existing challenge,early detection of Colletotrichum Kahawae disease in coffee cherries requires automated processes,prompt recognition,and accurate classifications.The proposed methodology selects CBD image datasets through four different stages for training and testing.XGBoost to train a model on datasets of coffee berries,with each image labeled as healthy or diseased.Once themodel is trained,SHAP algorithmto figure out which features were essential formaking predictions with the proposed model.Some of these characteristics were the cherry’s colour,whether it had spots or other damage,and how big the Lesions were.Virtual inception is important for classification to virtualize the relationship between the colour of the berry is correlated with the presence of disease.To evaluate themodel’s performance andmitigate excess fitting,a 10-fold cross-validation approach is employed.This involves partitioning the dataset into ten subsets,training the model on each subset,and evaluating its performance.In comparison to other contemporary methodologies,the model put forth achieved an accuracy of 98.56%.
基金funded by the Deanship for Research&Innovation,Ministry of Education in Saudi Arabia,for funding this research work through Project Number:IFP22UQU4281768DSR145.
文摘Autism spectrum disorder(ASD)can be defined as a neurodevelopmental condition or illness that can disturb kids who have heterogeneous characteristics,like changes in behavior,social disabilities,and difficulty communicating with others.Eye tracking(ET)has become a useful method to detect ASD.One vital aspect of moral erudition is the aptitude to have common visual attention.The eye-tracking approach offers valuable data regarding the visual behavior of children for accurate and early detection.Eye-tracking data can offer insightful information about the behavior and thought processes of people with ASD,but it is important to be aware of its limitations and to combine it with other types of data and assessment techniques to increase the precision of ASD detection.It operates by scanning the paths of eyes for extracting a series of eye projection points on images for examining the behavior of children with autism.The purpose of this research is to use deep learning to identify autistic disorders based on eye tracking.The Chaotic Butterfly Optimization technique is used to identify this specific disturbance.Therefore,this study develops an ET-based Autism Spectrum Disorder Diagnosis using Chaotic Butterfly Optimization with Deep Learning(ETASD-CBODL)technique.The presented ETASDCBODL technique mainly focuses on the recognition of ASD via the ET and DL models.To accomplish this,the ETASD-CBODL technique exploits the U-Net segmentation technique to recognize interested AREASS.In addition,the ETASD-CBODL technique employs Inception v3 feature extraction with CBO algorithm-based hyperparameter optimization.Finally,the long-shorttermmemory(LSTM)model is exploited for the recognition and classification of ASD.To assess the performance of the ETASD-CBODL technique,a series of simulations were performed on datasets from the figure-shared data repository.The experimental values of accuracy(99.29%),precision(98.78%),sensitivity(99.29%)and specificity(99.29%)showed a better performance in the ETASD-CBODL technique over recent approaches.
基金This research is funded by Deanship of Scientific Research at Umm Al-Qura University,Grant Code:22UQU4281768DSR05.
文摘Automated segmentation of brain tumors using Magnetic Resonance Imaging(MRI)data is critical in the analysis and monitoring of disease development.As a result,gliomas are aggressive and diverse tumors that may be split into intra-tumoral groups by using effective and accurate segmentation methods.It is intended to extract characteristics from an image using the Gray Level Co-occurrence(GLC)matrix feature extraction method described in the proposed work.Using Convolutional Neural Networks(CNNs),which are commonly used in biomedical image segmentation,CNNs have significantly improved the precision of the state-of-the-art segmentation of a brain tumor.Using two segmentation networks,a U-Net and a 3D CNN,we present a major yet easy combinative technique that results in improved and more precise estimates.The U-Net and 3D CNN are used together in this study to get better and more accurate estimates of what is going on.Using the dataset,two models were developed and assessed to provide segmentation maps that differed fundamentally in terms of the segmented tumour sub-region.Then,the estimates was made by two separate models that were put together to produce the final prediction.In comparison to current state-of-the-art designs,the precision(percentage)was 98.35,98.5,and 99.4 on the validation set for tumor core,enhanced tumor,and whole tumor,respectively.
基金Deanship of Scientific Research at Umm Al-Qura University,Grant Code,funds this research:22UQU4281768DSR05.
文摘Mobile Ad Hoc Networks(MANET)is the framework for social networking with a realistic framework.In theMANETenvironment,based on the query,information is transmitted between the sender and receiver.In the MANET network,the nodes within the communication range are involved in data transmission.Even the nodes that lie outside of the communication range are involved in the transmission of relay messages.However,due to the openness and frequent mobility of nodes,they are subjected to the vast range of security threats inMANET.Hence,it is necessary to develop an appropriate security mechanism for the dataMANET environment for data transmission.This paper proposed a security framework for the MANET network signature escrow scheme.The proposed framework uses the centralised Software Defined Network(SDN)with an ECC cryptographic technique.The developed security framework is stated as Escrow Elliptical Curve Cryptography SDN(EsECC_SDN)for attack detection and classification.The developed EsECC-SDN was adopted in two stages for attack classification and detection:(1)to perform secure data transmission between nodes SDN performs encryption and decryption of the data;and(2)to detect and classifies the attack in theMANET hyper alert based HiddenMarkovModel Transductive Deep Learning.Furthermore,the EsECC_SDN is involved in the assignment of labels in the transmitted data in the database(DB).The escrow handles these processes,and attacks are evaluated using the hyper alert.The labels are assigned based on the k-medoids attack clustering through label assignment through a transductive deep learning model.The proposed model uses the CICIDS dataset for attack detection and classification.The developed framework EsECC_SDN’s performance is compared to that of other classifiers such as AdaBoost,Regression,and Decision Tree.The performance of the proposed EsECC_SDN exhibits∼3%improved performance compared with conventional techniques.
基金This research is funded by the Deanship of Scientific Research at Umm Al-Qura University,Grant Code:22UQU4281755DSR02.
文摘Software needs modifications and requires revisions regularly.Owing to these revisions,retesting software becomes essential to ensure that the enhancements made,have not affected its bug-free functioning.The time and cost incurred in this process,need to be reduced by the method of test case selection and prioritization.It is observed that many nature-inspired techniques are applied in this area.African Buffalo Optimization is one such approach,applied to regression test selection and prioritization.In this paper,the proposed work explains and proves the applicability of the African Buffalo Optimization approach to test case selection and prioritization.The proposed algorithm converges in polynomial time(O(n^(2))).In this paper,the empirical evaluation of applying African Buffalo Optimization for test case prioritization is done on sample data set with multiple iterations.An astounding 62.5%drop in size and a 48.57%drop in the runtime of the original test suite were recorded.The obtained results are compared with Ant Colony Optimization.The comparative analysis indicates that African Buffalo Optimization and Ant Colony Optimization exhibit similar fault detection capabilities(80%),and a reduction in the overall execution time and size of the resultant test suite.The results and analysis,hence,advocate and encourages the use of African Buffalo Optimization in the area of test case selection and prioritization.
基金supported by the Deanship forResearch&Innovation,Ministry of Education in Saudi Arabia with the Grant Code:IFP22UUQU4281768DSR205.
文摘Unmanned aerial vehicles(UAVs),or drones,have revolutionized a wide range of industries,including monitoring,agriculture,surveillance,and supply chain.However,their widespread use also poses significant challenges,such as public safety,privacy,and cybersecurity.Cyberattacks,targetingUAVs have become more frequent,which highlights the need for robust security solutions.Blockchain technology,the foundation of cryptocurrencies has the potential to address these challenges.This study suggests a platform that utilizes blockchain technology tomanage drone operations securely and confidentially.By incorporating blockchain technology,the proposed method aims to increase the security and privacy of drone data.The suggested platform stores information on a public blockchain located on Ethereum and leverages the Ganache platform to ensure secure and private blockchain transactions.TheMetaMask wallet for Ethbalance is necessary for BCT transactions.The present research finding shows that the proposed approach’s efficiency and security features are superior to existing methods.This study contributes to the development of a secure and efficient system for managing drone operations that could have significant applications in various industries.The proposed platform’s security measures could mitigate privacy concerns,minimize cyber security risk,and enhance public safety,ultimately promoting the widespread adoption of UAVs.The results of the study demonstrate that the blockchain can ensure the fulfillment of core security needs such as authentication,privacy preservation,confidentiality,integrity,and access control.
基金This research is funded by Deanship of Scientific Research at Umm Al-Qura University,Grant Code:22UQU4281755DSR03.
文摘Sentiment Analysis(SA)is often referred to as opinion mining.It is defined as the extraction,identification,or characterization of the sentiment from text.Generally,the sentiment of a textual document is classified into binary classes i.e.,positive and negative.However,fine-grained classification provides a better insight into the sentiments.The downside is that fine-grained classification is more challenging as compared to binary.On the contrary,performance deteriorates significantly in the case of multi-class classification.In this study,pre-processing techniques and machine learning models for the multi-class classification of sentiments were explored.To augment the performance,a multi-layer classification model has been proposed.Owing to similitude with social media text,the movie reviews dataset has been used for the implementation.Supervised machine learning models namely Decision Tree,Support Vector Machine,and Naive Bayes models have been implemented for the task of sentiment classification.We have compared the models of single-layer architecture with multi-tier model.The results of Multi-tier model have slight improvement over the single-layer architecture.Moreover,multi-tier models have better recall which allow our proposed model to learn more context.We have discussed certain shortcomings of the model that will help researchers to design multi-tier models with more contextual information.
基金This research is funded by the Deanship of Scientific Research at Umm Al-Qura University,Grant Code:22UQU4281755DSR01。
文摘Recently,wireless sensor networks(WSNs)find their applicability in several real-time applications such as disaster management,military,surveillance,healthcare,etc.The utilization of WSNs in the disaster monitoring process has gained significant attention among research communities and governments.Real-time monitoring of disaster areas using WSN is a challenging process due to the energy-limited sensor nodes.Therefore,the clustering process can be utilized to improve the energy utilization of the nodes and thereby improve the overall functioning of the network.In this aspect,this study proposes a novel Lens-Oppositional Wild Goose Optimization based Energy Aware Clustering(LOWGO-EAC)scheme for WSN-assisted real-time disaster management.The major intention of the LOWGO-EAC scheme is to perform effective data collection and transmission processes in disaster regions.To achieve this,the LOWGOEAC technique derives a novel LOWGO algorithm by the integration of the lens oppositional-based learning(LOBL)concept with the traditional WGO algorithm to improve the convergence rate.In addition,the LOWGO-EAC technique derives a fitness function involving three input parameters like residual energy(RE),distance to the base station(BS)(DBS),and node degree(ND).The proposed LOWGO-EAC technique can accomplish improved energy efficiency and lifetime of WSNs in real-time disaster management scenarios.The experimental validation of the LOWGO-EAC model is carried out and the comparative study reported the enhanced performance of the LOWGO-EAC model over the recent approaches.
基金This research is funded by Deanship of Scientific Research at Umm Al-Qura University,Grant Code:22UQU4281755DSR01.
文摘High precision and reliable wind speed forecasting have become a challenge for meteorologists.Convective events,namely,strong winds,thunderstorms,and tornadoes,along with large hail,are natural calamities that disturb daily life.For accurate prediction of wind speed and overcoming its uncertainty of change,several prediction approaches have been presented over the last few decades.As wind speed series have higher volatility and nonlinearity,it is urgent to present cutting-edge artificial intelligence(AI)technology.In this aspect,this paper presents an intelligent wind speed prediction using chicken swarm optimization with the hybrid deep learning(IWSP-CSODL)method.The presented IWSP-CSODL model estimates the wind speed using a hybrid deep learning and hyperparameter optimizer.In the presented IWSP-CSODL model,the prediction process is performed via a convolutional neural network(CNN)based long short-term memory with autoencoder(CBLSTMAE)model.To optimally modify the hyperparameters related to the CBLSTMAE model,the chicken swarm optimization(CSO)algorithm is utilized and thereby reduces the mean square error(MSE).The experimental validation of the IWSP-CSODL model is tested using wind series data under three distinct scenarios.The comparative study pointed out the better outcomes of the IWSP-CSODL model over other recent wind speed prediction models.
基金This research is funded by the Deanship of Scientific Research at Umm Al-Qura University,Grant Code:22UQU4281768DSR01.
文摘An abnormality that develops in white blood cells is called leukemia.The diagnosis of leukemia is made possible by microscopic investigation of the smear in the periphery.Prior training is necessary to complete the morphological examination of the blood smear for leukemia diagnosis.This paper proposes a Histogram Threshold Segmentation Classifier(HTsC)for a decision support system.The proposed HTsC is evaluated based on the color and brightness variation in the dataset of blood smear images.Arithmetic operations are used to crop the nucleus based on automated approximation.White Blood Cell(WBC)segmentation is calculated using the active contour model to determine the contrast between image regions using the color transfer approach.Through entropy-adaptive mask generation,WBCs accurately detect the circularity region for identification of the nucleus.The proposed HTsC addressed the cytoplasm region based on variations in size and shape concerning addition and rotation operations.Variation in WBC imaging characteristics depends on the cytoplasmic and nuclear regions.The computation of the variation between image features in the cytoplasm and nuclei regions of the WBCs is used to classify blood smear images.The classification of the blood smear is performed with conventional machine-learning techniques integrated with the features of the deep-learning regression classifier.The designed HTsC classifier comprises the binary classifier with the classification of the lymphocytes,monocytes,neutrophils,eosinophils,and abnormalities in the WBCs.The proposed HTsC identifies the abnormal activity in the WBC,considering the color and shape features.It exhibits a higher classification accuracy value of 99.6%when combined with the other classifiers.The comparative analysis expressed that the proposed HTsC model exhibits an overall accuracy value of 98%,which is approximately 3%–12%higher than the conventional technique.
基金This research is funded by the Deanship of Scientific Research at Umm Al-Qura University,Grant Code:22UQU4281768DSR01.
文摘Leukemia,often called blood cancer,is a disease that primarily affects white blood cells(WBCs),which harms a person’s tissues and plasma.This condition may be fatal when if it is not diagnosed and recognized at an early stage.The physical technique and lab procedures for Leukaemia identification are considered time-consuming.It is crucial to use a quick and unexpected way to identify different forms of Leukaemia.Timely screening of the morphologies of immature cells is essential for reducing the severity of the disease and reducing the number of people who require treatment.Various deep-learning(DL)model-based segmentation and categorization techniques have already been introduced,although they still have certain drawbacks.In order to enhance feature extraction and classification in such a practical way,Mayfly optimization with Generative Adversarial Network(MayGAN)is introduced in this research.Furthermore,Generative Adversarial System(GAS)is integrated with Principal Component Analysis(PCA)in the feature-extracted model to classify the type of blood cancer in the data.The semantic technique and morphological procedures using geometric features are used to segment the cells that makeup Leukaemia.Acute lymphocytic Leukaemia(ALL),acute myelogenous Leukaemia(AML),chronic lymphocytic Leukaemia(CLL),chronic myelogenous Leukaemia(CML),and aberrant White Blood Cancers(WBCs)are all successfully classified by the proposed MayGAN model.The proposed MayGAN identifies the abnormal activity in the WBC,considering the geometric features.Compared with the state-of-the-art methods,the proposed MayGAN achieves 99.8%accuracy,98.5%precision,99.7%recall,97.4%F1-score,and 98.5%Dice similarity coefficient(DSC).
基金Deanship of Scientific Research at Umm Al-Qura University,Grant Code,funds this research:22UQU4281768DSR08。
文摘Mobile Ad Hoc Network(MANET)is an infrastructure-less network that is comprised of a set of nodes that move randomly.In MANET,the overall performance is improved through multipath multicast routing to achieve the quality of service(quality of service).In this,different nodes are involved in the information data collection and transmission to the destination nodes in the network.The different nodes are combined and presented to achieve energy-efficient data transmission and classification of the nodes.The route identification and routing are established based on the data broadcast by the network nodes.In transmitting the data packet,evaluating the data delivery ratio is necessary to achieve optimal data transmission in the network.Furthermore,energy consumption and overhead are considered essential factors for the effective data transmission rate and better data delivery rate.In this paper,a Gradient-Based Energy Optimization model(GBEOM)for the route in MANET is proposed to achieve an improved data delivery rate.Initially,the Weighted Multi-objective Cluster-based Spider Monkey Load Balancing(WMC-SMLB)technique is utilized for obtaining energy efficiency and load balancing routing.The WMC algorithm is applied to perform an efficient node clustering process from the considered mobile nodes in MANET.Load balancing efficiency is improved with a higher data delivery ratio and minimum routing overhead based on the residual energy and bandwidth estimation.Next,the Gradient Boosted Multinomial ID3 Classification algorithm is applied to improve the performance of multipath multicast routing in MANET with minimal energy consumption and higher load balancing efficiency.The proposed GBEOM exhibits∼4%improved performance in MANET routing.
文摘A new secured database management system architecture using intrusion detection systems(IDS)is proposed in this paper for organizations with no previous role mapping for users.A simple representation of Structured Query Language queries is proposed to easily permit the use of the worked clustering algorithm.A new clustering algorithm that uses a tube search with adaptive memory is applied to database log files to create users’profiles.Then,queries issued for each user are checked against the related user profile using a classifier to determine whether or not each query is malicious.The IDS will stop query execution or report the threat to the responsible person if the query is malicious.A simple classifier based on the Euclidean distance is used and the issued query is transformed to the proposed simple representation using a classifier,where the Euclidean distance between the centers and the profile’s issued query is calculated.A synthetic data set is used for our experimental evaluations.Normal user access behavior in relation to the database is modelled using the data set.The false negative(FN)and false positive(FP)rates are used to compare our proposed algorithm with other methods.The experimental results indicate that our proposed method results in very small FN and FP rates.
基金This research is funded by Taif University, TURSP-2020/115.
文摘:Social media data are rapidly increasing and constitute a source of user opinions and tips on a wide range of products and services.The increasing availability of such big data on biased reviews and blogs creates challenges for customers and businesses in reviewing all content in their decision-making process.To overcome this challenge,extracting suggestions from opinionated text is a possible solution.In this study,the characteristics of suggestions are analyzed and a suggestion mining extraction process is presented for classifying suggestive sentences from online customers’reviews.A classification using a word-embedding approach is used via the XGBoost classifier.The two datasets used in this experiment relate to online hotel reviews and Microsoft Windows App Studio discussion reviews.F1,precision,recall,and accuracy scores are calculated.The results demonstrated that the XGBoost classifier outperforms—with an accuracy of more than 80%.Moreover,the results revealed that suggestion keywords and phrases are the predominant features for suggestion extraction.Thus,this study contributes to knowledge and practice by comparing feature extraction classifiers and identifying XGBoost as a better suggestion mining process for identifying online reviews.
文摘Network security and energy consumption are deemed to be two important components of wireless and mobile ad hoc networks(WMANets).There are various routing attacks which harm Ad Hoc networks.This is because of the unsecure wireless communication,resource constrained capabilities and dynamic topology.In order to cope with these issues,Ad Hoc On-Demand Distance Vector(AODV)routing protocol can be used to remain the normal networks functionality and to adjust data transmission by defending the networks against black hole attacks.The proposed system,in this work,identifies the optimal route from sender to collector,prioritizing the number of jumps,the battery life,and security,which are fundamental prerequisites.Researches have proposed various plans for detecting the shortest route,as well as ensuring energy conversions and defense against threats and attacks.In this regard,the packet drop attack is one of the most destructive attack against WMANet communication and hence merits special attention.This type of attack may allow the attacker to take control of the attacked hubs,which may lost packets or transmitted information via a wrong route during the packets journey from a source hub to a target one.Hence,a new routing protocol method has been proposed in this study.It applies the concept of energy saving systems to conserve energy that is not required by the system.The proposed method for energy aware detection and prevention of packet drop attacks in mobile ad hoc networks is termed the Ad Hoc On-Demand and Distance Vector–Packet Drop Battling Mechanism(AODV–PDBM).
基金Taif University supported this study through Taif University Researcher Support Project(TURSP-2020/115).
文摘A major issue while building web applications is proper input validation and sanitization.Attackers can quickly exploit errors and vulnerabilities that lead to malicious behavior in web application validation operations.Attackers are rapidly improving their capabilities and technologies and now focus on exploiting vulnerabilities in web applications and compromising confidentiality.Cross-site scripting(XSS)and SQL injection attack(SQLIA)are attacks in which a hacker sends malicious inputs(cheat codes)to confuse a web application,to access or disable the application’s back-end without user awareness.In this paper,we explore the problem of detecting and removing bugs from both client-side and server-side code.A new idea that allows assault detection and prevention using the input validation mechanism is introduced.In addition,the project supports web security tests by providing easy-to-use and accurate models of vulnerability prediction and methods for validation.If these attributes imply a program statement that is vulnerable in an SQLIA,this can be evaluated and checked for a set of static code attributes.Additionally,we provide a script whitelisting interception layer built into the browser’s JavaScript engine,where the SQLIA is eventually detected and the XSS attack resolved using the method of input validation and script whitelisting under pushdown automatons.This framework was tested under a scenario of an SQL attack and XSS.It is demonstrated to offer an extensive improvement over the current framework.The framework’s main ability lies in the decrease of bogus positives.It has been demonstrated utilizing new methodologies,nevertheless giving unique access to sites dependent on the peculiarity score related to web demands.Our proposed input validation framework is shown to identify all anomalies and delivers better execution in contrast with the current program.
基金We deeply acknowledge Taif University for supporting this study through Taif University Researchers Supporting Project Number(TURSP-2020/115),Taif University,Taif,Saudi Arabia.
文摘The mission of classifying remote sensing pictures based on their contents has a range of applications in a variety of areas.In recent years,a lot of interest has been generated in researching remote sensing image scene classification.Remote sensing image scene retrieval,and scene-driven remote sensing image object identification are included in the Remote sensing image scene understanding(RSISU)research.In the last several years,the number of deep learning(DL)methods that have emerged has caused the creation of new approaches to remote sensing image classification to gain major breakthroughs,providing new research and development possibilities for RS image classification.A new network called Pass Over(POEP)is proposed that utilizes both feature learning and end-to-end learning to solve the problem of picture scene comprehension using remote sensing imagery(RSISU).This article presents a method that combines feature fusion and extraction methods with classification algorithms for remote sensing for scene categorization.The benefits(POEP)include two advantages.The multi-resolution feature mapping is done first,using the POEP connections,and combines the several resolution-specific feature maps generated by the CNN,resulting in critical advantages for addressing the variation in RSISU data sets.Secondly,we are able to use Enhanced pooling tomake the most use of themulti-resolution feature maps that include second-order information.This enablesCNNs to better cope with(RSISU)issues by providing more representative feature learning.The data for this paper is stored in a UCI dataset with 21 types of pictures.In the beginning,the picture was pre-processed,then the features were retrieved using RESNET-50,Alexnet,and VGG-16 integration of architectures.After characteristics have been amalgamated and sent to the attention layer,after this characteristic has been fused,the process of classifying the data will take place.We utilize an ensemble classifier in our classification algorithm that utilizes the architecture of a Decision Tree and a Random Forest.Once the optimum findings have been found via performance analysis and comparison analysis.
基金This research is funded by Taif University,TURSP-2020/150.
文摘Fruit classification is found to be one of the rising fields in computer and machine vision.Many deep learning-based procedures worked out so far to classify images may have some ill-posed issues.The performance of the classification scheme depends on the range of captured images,the volume of features,types of characters,choice of features from extracted features,and type of classifiers used.This paper aims to propose a novel deep learning approach consisting of Convolution Neural Network(CNN),Recurrent Neural Network(RNN),and Long Short-TermMemory(LSTM)application to classify the fruit images.Classification accuracy depends on the extracted and selected optimal features.Deep learning applications CNN,RNN,and LSTM were collectively involved to classify the fruits.CNN is used to extract the image features.RNN is used to select the extracted optimal features and LSTM is used to classify the fruits based on extracted and selected images features by CNN and RNN.Empirical study shows the supremacy of proposed over existing Support Vector Machine(SVM),Feed-forwardNeural Network(FFNN),and Adaptive Neuro-Fuzzy Inference System(ANFIS)competitive techniques for fruit images classification.The accuracy rate of the proposed approach is quite better than the SVM,FFNN,and ANFIS schemes.It has been concluded that the proposed technique outperforms existing schemes.
基金‘This research is funded by Taif University,TURSP-2020/115’.
文摘Software crowdsourcing(SW CS)is an evolving software development paradigm,in which crowds of people are asked to solve various problems through an open call(with the encouragement of prizes for the top solutions).Because of its dynamic nature,SW CS has been progressively accepted and adopted in the software industry.However,issues pertinent to the understanding of requirements among crowds of people and requirements engineers are yet to be clarified and explained.If the requirements are not clear to the development team,it has a significant effect on the quality of the software product.This study aims to identify the potential challenges faced by requirements engineers when conducting the SW–CS based requirements engineering(RE)process.Moreover,solutions to overcome these challenges are also identified.Qualitative data analysis is performed on the interview data collected from software industry professionals.Consequently,20 SW–CS based RE challenges and their subsequent proposed solutions are devised,which are further grouped under seven categories.This study is beneficial for academicians,researchers and practitioners by providing detailed SW–CS based RE challenges and subsequent solutions that could eventually guide them to understand and effectively implement RE in SW CS.