A model predictive current control(MPCC)with adaptive-adjusting method of timescales for permanent magnet synchronous motors(PMSMs)is proposed in this paper to improve the dynamic response and prediction accuracy in t...A model predictive current control(MPCC)with adaptive-adjusting method of timescales for permanent magnet synchronous motors(PMSMs)is proposed in this paper to improve the dynamic response and prediction accuracy in transient-state,while lessening the computational burden and improving the control performance in steady-state.The timescale characteristics of different parts of MPCC,such as signal sampling,prediction calculation,control output,model error correction,are analyzed,and the algorithm architecture of MPCC with multi-timescale is proposed.The difference between reference and actual speed,and the change rate of actual speed are utilized to discriminate the transient state of speed change and load change,respectively.Adaptive-adjusting method of control period and prediction stepsize are illustrated in detail after operation condition discrimination.Experimental results of a PMSM are presented to validate the effectiveness of proposed MPCC.In addition,comparative evaluation of single-step MPCC with fixed timescale and proposed MPCC is conducted,which demonstrates the superiority of proposed control strategy.展开更多
This paper presents an exact analytical subdomain model of dual-stator consequent-pole permanent-magnet(DSCPPM)machines accounting for tooth-tips,which can accurately predict the armature reaction field distribution i...This paper presents an exact analytical subdomain model of dual-stator consequent-pole permanent-magnet(DSCPPM)machines accounting for tooth-tips,which can accurately predict the armature reaction field distribution in DSCPPM machines.In the proposed subdomain model,the field domain is composed of four types of sub-regions,viz.magnets,outer/inner air gaps,slots and slot openings.The analytical expressions of vector potential in each sub-region are determined by boundary and interface conditions.In comparison to the analytically predicted results,the corresponding flux density field distributions computed by finite element(FE)method are analyzed,which confirms the excellent accuracy of the developed subdomain model.展开更多
This paper presents parametric analysis of driving range of electric vehicles driven by V-type interior permanent magnet motors aiming at maximum driving range,i.e.,minimal total energy consumption of the motors over ...This paper presents parametric analysis of driving range of electric vehicles driven by V-type interior permanent magnet motors aiming at maximum driving range,i.e.,minimal total energy consumption of the motors over a driving cycle.Influence of design parameters including tooth width,slot depth,split ratio(the ratio of inner diameter to outer diameter of the stator),and V-type magnet angle on the energy consumption of the motors and driving range of electric vehicles over a driving cycle is investigated in detail.The investigation is carried out for two typical driving cycles with different characteristics to represent different conditions:One is high-speed,low-torque cycle-Highway Fuel Economy Test and the other is low-speed,high-torque cycle-Artemis Urban Driving Cycle.It shows that for both driving cycles,the same parameters may have different influence on the energy consumption of the motors,as well as driving range of electric vehicles.展开更多
This paper presents a comparative investigation into unbalanced magnetic force(UMF)of asymmetric permanent magnet machines without rotor eccentricities,particularly focusing on the difference between internal-and exte...This paper presents a comparative investigation into unbalanced magnetic force(UMF)of asymmetric permanent magnet machines without rotor eccentricities,particularly focusing on the difference between internal-and external-rotor topologies.The asymmetric field distribution results in radial and tangential asymmetric force waves.Although the radial and tangential stresses are in different direction,the UMF components they produce are nearly aligned.The UMF from asymmetric radial force wave can be additive or subtractive to that from asymmetric tangential force wave.Investigation shows that for the same pole slot number combination,if the UMFs due to radial and tangential force waves are additive in internal rotor machine,they are subtractive in the external rotor counterpart,and vice versa.Investigation reveals a general rule determining whether additive or cancelling:for a UMF produced by any two field harmonics,they are additive if the higher order is produced by the outer part outside the airgap,but cancelling if the higher order is produced by the inner part.Therefore,for a machine with pole number 2p=3k+1,they are additive if it is an external-rotor machine,but otherwise subtractive.On the other hand,for a machine with pole number 2p=3k-1,they are subtractive if it is an external-rotor machine,but otherwise additive.For the UMF due to armature reaction only,they are subtractive for external-rotor machines,but otherwise additive.The investigation is carried out by an analytical model and validated by finite element analysis.展开更多
Smooth and strong copper foils are highly required for the development of printed circuit boards and Li-ion batteries.Adding additives is an efficient and low-cost method to enhance electrodeposited copper foils.Here ...Smooth and strong copper foils are highly required for the development of printed circuit boards and Li-ion batteries.Adding additives is an efficient and low-cost method to enhance electrodeposited copper foils.Here we chose Bis-(3-sulfopropyl)-disulfide(SPS)as the additive and investigated its concentration on the surface roughness and tensile strength of the electrodeposited copper foils.A copper foil with the smoothest surface(Rz=2.1μm)and the highest tensile strength(~338 MPa)was prepared with1.5 mg/L SPS.The contact angle on the copper foil decreased with the reduction of surface roughness.The enhancing mechanism of the SPS was investigated by scanning electron microscopy and X-ray diffraction.The refined grain and enhanced(220)texture were considered to be the radical reason for the smooth and strong copper foils.The electrochemical results prove the suppressing effect is related to the SPS adsorption.展开更多
Cathode ablation is one of the dominant limitations for extending the maximum operating time of arc heaters.In this work,the arc ablation behaviors and mechanisms of commercial CuCr10,CuCr25,and CuCr50 cathodes were i...Cathode ablation is one of the dominant limitations for extending the maximum operating time of arc heaters.In this work,the arc ablation behaviors and mechanisms of commercial CuCr10,CuCr25,and CuCr50 cathodes were investigated for pure copper and pure chromium cathodes.The discharging homogeneity was improved with the increase of chromium content in the cathodes,which was attributed to the formed chromic oxide layer.The CuCr50 cathodes exhibited the lowest ablation rate with a reduction of 27.0%compared to the copper cathodes.The chromic oxide formed in the pit protected the bottom matrix,leading to a homogeneous ablation process.The mechanism for the improved homogeneous ablation behaviors of the CuCr50 cathodes was proposed and featured by the suppression of deep pits and the dispersion of arc foot.Future attention will be focused on designing composite cathodes with an anti-ablation surface layer and a good conductive matrix.展开更多
In modern rail transportation,inverter drive systems have been extensively used due to their excellent speed control capabilities.However,in recent years,premature failure problems caused by bearing voltage and curren...In modern rail transportation,inverter drive systems have been extensively used due to their excellent speed control capabilities.However,in recent years,premature failure problems caused by bearing voltage and current phenomena have been frequently reported in electric motors,with electrical bearing failures making up a considerable percentage.The purpose of this review is to provide a comprehensive overview of facets relating to the electrical erosion of bearings in an electrical environment represented by railway vehicles.First,the origins of the phenomenon as well as typical bearing electrical failure modes are discussed.Next,we introduce the distinctive features of the electrical environment of railway traction motor bearings,including output voltages with high common-mode components and systems with complex grounding configurations.Then,we classify the fundamental mechanisms for generating bearing voltages/currents into four groups,and present their modeling processes,including equivalent circuit establishment and parameter determination methods.Furthermore,we summarize the strategies frequently used to protect bearings,and describe a typical solution to suppress electrical bearing failures in railway vehicles.Finally,we present a case example to illustrate a research procedure for systematic investigation of inverter-induced bearing currents in rail transportation.展开更多
1 Introduction The high-speed railway is one of the most active technological fields in China.Since the opening of the high-speed line between Beijing and Tianjin in 2008,China has built the world’s largest high-spee...1 Introduction The high-speed railway is one of the most active technological fields in China.Since the opening of the high-speed line between Beijing and Tianjin in 2008,China has built the world’s largest high-speed railway network with the highest average operating speed in the world(Bian et al.,2019;Cao et al.,2021;Chen et al.,2022).China has also created the world’s largest,most advanced,and comprehensive scientific research system and industrial chain in the field of high-speed railways.Currently,China’s high-speed railway oper‐ating mileage,the total number of research personnel related to high-speed railways,and the total research investment in them,all exceed the sum of those of all other countries.展开更多
The traction drive system is the“heart”of rail transit vehicles.The development of sustainable,secure,economic,reliable,efficient,and comfortable contemporary rail transportation has led to increasingly stringent re...The traction drive system is the“heart”of rail transit vehicles.The development of sustainable,secure,economic,reliable,efficient,and comfortable contemporary rail transportation has led to increasingly stringent requirements for traction drive systems.The interest in such systems is constantly growing,supported by advancements such as permanent magnet(PM)motors,advanced electronic devices such as those using silicon carbide(SiC),new-generation insulating materials such as organic silicon,and advanced magnetic materials such as rare-earth magnets and amorphous materials.Progress has also been made in control methods,manufacturing technology,artificial intelligence(AI),and other advanced technologies.In this paper,we briefly review the state-of-the-art critical global trends in rail transit traction drive technology in recent years.Potential areas for research and the main obstacles hindering the development of the next-generation rail transit traction drive systems are also discussed.Finally,we describe some advanced traction drive technologies used in actual engineering applications.展开更多
High-strength conductive Cu alloys play an essential role in high-speed railways,5G networks,and power transmission.The compound precipitates of alloying elements such as Cr,Zr,Fe,and Si in Cu alloys significantly reg...High-strength conductive Cu alloys play an essential role in high-speed railways,5G networks,and power transmission.The compound precipitates of alloying elements such as Cr,Zr,Fe,and Si in Cu alloys significantly regulate the microstructure and properties of these alloys.They can ensure that the alloys have high strength without damaging conductivity seriously,which is usually a difficult problem in the development of Cu alloys.This paper systematically expounds on the microstructure and concerned factors of compound precipitates in high-strength conductive Cu alloys such as Cu-Cr-Zr,Cu-Zr,Cu-Ni-Si,and Cu-Fe-P.In particular,factors affecting the precipitates are summarized from the perspectives of composition and process to guide the regulation of properties.Some new,promising,high-performance Cu alloys,including Cu-Co-Si,Cu-Co-Ti,and Cu-Fe-Ti,are described.Finally,we look at the research prospects for precipitation-strengthened Cu alloys.展开更多
This paper proposes the application of high-voltage stator-cable windings in superconducting machines,based on the characteristics of strong magnetic fields and large air gaps.Cross-linked polyethylene cable winding c...This paper proposes the application of high-voltage stator-cable windings in superconducting machines,based on the characteristics of strong magnetic fields and large air gaps.Cross-linked polyethylene cable winding can be employed to achieve a rated voltage of 35 kV in direct-current(DC)-field superconducting machines,thereby enabling a direct connection between the superconducting machine and the power grid,eliminating the need for transformers.We first,through finite element analysis,demonstrate that the proposed high-voltage high-temperature superconducting machine not only meets the requirement of a 35 kV-rated voltage,but also exhibits minimal flux leakage,torque fluctuation,and harmonic distortion.We then compare three candidate types to discuss the tradeoff between the multi-group superconducting field winding arrangement and machine performances.We propose inverted trapezoidal superconducting field winding as a promising candidate,because it has minimal superconductivity material usage,the largest safety margin for the superconducting coils(SCs),low thrust ripple,and low total harmonic distortion with the desired 35 kV-rated voltage.Finally,through large-scale design parameter sweeping,we show how we selected the optimal parameters for field winding and validated them by the finite element method.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 52077054in part by the Natural Science Foundation of Hebei Province under Grant E2019202092+2 种基金in part by the China Postdoctoral Science Foundation under Grant 2021T140077 and 2020M681446in part by the State Key Laboratory of Reliability and Intelligence of Electrical Equipment under Grant EERI_PI2020002in part by the Funds for Creative Research Groups of Hebei Province under Grant E2020202142.
文摘A model predictive current control(MPCC)with adaptive-adjusting method of timescales for permanent magnet synchronous motors(PMSMs)is proposed in this paper to improve the dynamic response and prediction accuracy in transient-state,while lessening the computational burden and improving the control performance in steady-state.The timescale characteristics of different parts of MPCC,such as signal sampling,prediction calculation,control output,model error correction,are analyzed,and the algorithm architecture of MPCC with multi-timescale is proposed.The difference between reference and actual speed,and the change rate of actual speed are utilized to discriminate the transient state of speed change and load change,respectively.Adaptive-adjusting method of control period and prediction stepsize are illustrated in detail after operation condition discrimination.Experimental results of a PMSM are presented to validate the effectiveness of proposed MPCC.In addition,comparative evaluation of single-step MPCC with fixed timescale and proposed MPCC is conducted,which demonstrates the superiority of proposed control strategy.
基金This work was supported by the National Natural Science Foundation of China under Grant 51677169 and Grant 51637009 and by the Fundamental Research Funds for the Central Universities under Grant 2017QNA4016.
文摘This paper presents an exact analytical subdomain model of dual-stator consequent-pole permanent-magnet(DSCPPM)machines accounting for tooth-tips,which can accurately predict the armature reaction field distribution in DSCPPM machines.In the proposed subdomain model,the field domain is composed of four types of sub-regions,viz.magnets,outer/inner air gaps,slots and slot openings.The analytical expressions of vector potential in each sub-region are determined by boundary and interface conditions.In comparison to the analytically predicted results,the corresponding flux density field distributions computed by finite element(FE)method are analyzed,which confirms the excellent accuracy of the developed subdomain model.
基金This work was supported by the National Natural Science Foundation of China under Grant 51677169 and Grant 51637009.
文摘This paper presents parametric analysis of driving range of electric vehicles driven by V-type interior permanent magnet motors aiming at maximum driving range,i.e.,minimal total energy consumption of the motors over a driving cycle.Influence of design parameters including tooth width,slot depth,split ratio(the ratio of inner diameter to outer diameter of the stator),and V-type magnet angle on the energy consumption of the motors and driving range of electric vehicles over a driving cycle is investigated in detail.The investigation is carried out for two typical driving cycles with different characteristics to represent different conditions:One is high-speed,low-torque cycle-Highway Fuel Economy Test and the other is low-speed,high-torque cycle-Artemis Urban Driving Cycle.It shows that for both driving cycles,the same parameters may have different influence on the energy consumption of the motors,as well as driving range of electric vehicles.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 51677169 and 51637009.
文摘This paper presents a comparative investigation into unbalanced magnetic force(UMF)of asymmetric permanent magnet machines without rotor eccentricities,particularly focusing on the difference between internal-and external-rotor topologies.The asymmetric field distribution results in radial and tangential asymmetric force waves.Although the radial and tangential stresses are in different direction,the UMF components they produce are nearly aligned.The UMF from asymmetric radial force wave can be additive or subtractive to that from asymmetric tangential force wave.Investigation shows that for the same pole slot number combination,if the UMFs due to radial and tangential force waves are additive in internal rotor machine,they are subtractive in the external rotor counterpart,and vice versa.Investigation reveals a general rule determining whether additive or cancelling:for a UMF produced by any two field harmonics,they are additive if the higher order is produced by the outer part outside the airgap,but cancelling if the higher order is produced by the inner part.Therefore,for a machine with pole number 2p=3k+1,they are additive if it is an external-rotor machine,but otherwise subtractive.On the other hand,for a machine with pole number 2p=3k-1,they are subtractive if it is an external-rotor machine,but otherwise additive.For the UMF due to armature reaction only,they are subtractive for external-rotor machines,but otherwise additive.The investigation is carried out by an analytical model and validated by finite element analysis.
基金the National Key R&D Program of China(No.2017YFB1200800)the National Natural Science Foundation of China(Nos.51827810 and 51637009)the Fundamental Research Funds for the Central Universities(2018XZZX001-05)。
文摘Smooth and strong copper foils are highly required for the development of printed circuit boards and Li-ion batteries.Adding additives is an efficient and low-cost method to enhance electrodeposited copper foils.Here we chose Bis-(3-sulfopropyl)-disulfide(SPS)as the additive and investigated its concentration on the surface roughness and tensile strength of the electrodeposited copper foils.A copper foil with the smoothest surface(Rz=2.1μm)and the highest tensile strength(~338 MPa)was prepared with1.5 mg/L SPS.The contact angle on the copper foil decreased with the reduction of surface roughness.The enhancing mechanism of the SPS was investigated by scanning electron microscopy and X-ray diffraction.The refined grain and enhanced(220)texture were considered to be the radical reason for the smooth and strong copper foils.The electrochemical results prove the suppressing effect is related to the SPS adsorption.
基金This work is financially supported by the National Key R&D Program of China(No.2017YFB1200800)the National Natural Science Foundation of China(Nos.11725210,11572281)the Fundamental Research Funds for the Central Universities(No.2018XZZX001-05)。
文摘Cathode ablation is one of the dominant limitations for extending the maximum operating time of arc heaters.In this work,the arc ablation behaviors and mechanisms of commercial CuCr10,CuCr25,and CuCr50 cathodes were investigated for pure copper and pure chromium cathodes.The discharging homogeneity was improved with the increase of chromium content in the cathodes,which was attributed to the formed chromic oxide layer.The CuCr50 cathodes exhibited the lowest ablation rate with a reduction of 27.0%compared to the copper cathodes.The chromic oxide formed in the pit protected the bottom matrix,leading to a homogeneous ablation process.The mechanism for the improved homogeneous ablation behaviors of the CuCr50 cathodes was proposed and featured by the suppression of deep pits and the dispersion of arc foot.Future attention will be focused on designing composite cathodes with an anti-ablation surface layer and a good conductive matrix.
基金supported by the National Key R&D Program of China(No.2018YFB1201804)the National Natural Science Foundation of China(Nos.52293424,51827810,and 51977192).
文摘In modern rail transportation,inverter drive systems have been extensively used due to their excellent speed control capabilities.However,in recent years,premature failure problems caused by bearing voltage and current phenomena have been frequently reported in electric motors,with electrical bearing failures making up a considerable percentage.The purpose of this review is to provide a comprehensive overview of facets relating to the electrical erosion of bearings in an electrical environment represented by railway vehicles.First,the origins of the phenomenon as well as typical bearing electrical failure modes are discussed.Next,we introduce the distinctive features of the electrical environment of railway traction motor bearings,including output voltages with high common-mode components and systems with complex grounding configurations.Then,we classify the fundamental mechanisms for generating bearing voltages/currents into four groups,and present their modeling processes,including equivalent circuit establishment and parameter determination methods.Furthermore,we summarize the strategies frequently used to protect bearings,and describe a typical solution to suppress electrical bearing failures in railway vehicles.Finally,we present a case example to illustrate a research procedure for systematic investigation of inverter-induced bearing currents in rail transportation.
文摘1 Introduction The high-speed railway is one of the most active technological fields in China.Since the opening of the high-speed line between Beijing and Tianjin in 2008,China has built the world’s largest high-speed railway network with the highest average operating speed in the world(Bian et al.,2019;Cao et al.,2021;Chen et al.,2022).China has also created the world’s largest,most advanced,and comprehensive scientific research system and industrial chain in the field of high-speed railways.Currently,China’s high-speed railway oper‐ating mileage,the total number of research personnel related to high-speed railways,and the total research investment in them,all exceed the sum of those of all other countries.
基金supported by the National Key Research and Development Program of China(No.2018YFB1201804)the Science and Technology Research and Development Plan of China State Railway Group Co.,Ltd.(No.N2021J049).
文摘The traction drive system is the“heart”of rail transit vehicles.The development of sustainable,secure,economic,reliable,efficient,and comfortable contemporary rail transportation has led to increasingly stringent requirements for traction drive systems.The interest in such systems is constantly growing,supported by advancements such as permanent magnet(PM)motors,advanced electronic devices such as those using silicon carbide(SiC),new-generation insulating materials such as organic silicon,and advanced magnetic materials such as rare-earth magnets and amorphous materials.Progress has also been made in control methods,manufacturing technology,artificial intelligence(AI),and other advanced technologies.In this paper,we briefly review the state-of-the-art critical global trends in rail transit traction drive technology in recent years.Potential areas for research and the main obstacles hindering the development of the next-generation rail transit traction drive systems are also discussed.Finally,we describe some advanced traction drive technologies used in actual engineering applications.
基金supported by the National Natural Science Foundation of China(Nos.92266202,51827810,and 51977193).
文摘High-strength conductive Cu alloys play an essential role in high-speed railways,5G networks,and power transmission.The compound precipitates of alloying elements such as Cr,Zr,Fe,and Si in Cu alloys significantly regulate the microstructure and properties of these alloys.They can ensure that the alloys have high strength without damaging conductivity seriously,which is usually a difficult problem in the development of Cu alloys.This paper systematically expounds on the microstructure and concerned factors of compound precipitates in high-strength conductive Cu alloys such as Cu-Cr-Zr,Cu-Zr,Cu-Ni-Si,and Cu-Fe-P.In particular,factors affecting the precipitates are summarized from the perspectives of composition and process to guide the regulation of properties.Some new,promising,high-performance Cu alloys,including Cu-Co-Si,Cu-Co-Ti,and Cu-Fe-Ti,are described.Finally,we look at the research prospects for precipitation-strengthened Cu alloys.
基金State Grid Corporation of China R&D Project(No.5500-202319193A-1-1-ZN).
文摘This paper proposes the application of high-voltage stator-cable windings in superconducting machines,based on the characteristics of strong magnetic fields and large air gaps.Cross-linked polyethylene cable winding can be employed to achieve a rated voltage of 35 kV in direct-current(DC)-field superconducting machines,thereby enabling a direct connection between the superconducting machine and the power grid,eliminating the need for transformers.We first,through finite element analysis,demonstrate that the proposed high-voltage high-temperature superconducting machine not only meets the requirement of a 35 kV-rated voltage,but also exhibits minimal flux leakage,torque fluctuation,and harmonic distortion.We then compare three candidate types to discuss the tradeoff between the multi-group superconducting field winding arrangement and machine performances.We propose inverted trapezoidal superconducting field winding as a promising candidate,because it has minimal superconductivity material usage,the largest safety margin for the superconducting coils(SCs),low thrust ripple,and low total harmonic distortion with the desired 35 kV-rated voltage.Finally,through large-scale design parameter sweeping,we show how we selected the optimal parameters for field winding and validated them by the finite element method.