It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low an...It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.展开更多
Lamellar calcite veins are prevalent in carbonate-rich,lacustrine dark shale.The formation mechanisms of these veins have been extensively debated,focusing on factors such as timing,depth,material source,and driving f...Lamellar calcite veins are prevalent in carbonate-rich,lacustrine dark shale.The formation mechanisms of these veins have been extensively debated,focusing on factors such as timing,depth,material source,and driving forces.This paper examines dark lacustrine shale lamellar calcite veins in the Paleogene strata of Dongying Depression,using various analytical techniques:petrography,isotope geochemistry,cathodoluminescence,inclusion thermometry,and electron probe micro-analysis.Two distinct types of calcite veins have been identified:granular calcite veins and sparry calcite veins.These two types differ significantly in color,grain structure,morphology,and inclusions.Through further investigation,it was observed that vein generation occurred from the shallow burial period to the maturation of organic matter,with a transition from granular calcite veins to sparry calcite veins.The granular calcite veins exhibit characteristics associated with the shallow burial period,including plastically deformed laminae and veins,the development of strawberry pyrite,the absence of oil and gas,weak fractionation in oxygen isotopes,and their contact relationship with sparry calcite veins.These granular calcite veins were likely influenced by the reduction of sulfate bacteria.On the other hand,sparry calcite veins with fibrous grains are antitaxial and closely linked to the evolution and maturation of organic matter.They contain oil and gas inclusions and show a distribution range of homogenization temperature between 90℃ and 120℃ and strong fractionation in oxygen isotopes,indicating formation during the hydrocarbon expulsion period.The carbon isotope analysis of the surrounding rocks and veins suggests that the material for vein formation originates from the shale itself,specifically authigenic micritic calcite modified by the action of methanogens.The opening of horizontal fractures and vein formation is likely driven by fluid overpressure resulting from undercompaction and hydrocarbon expulsion.Veins may form rapidly or through multi-stage composite processes.Early veins are predominantly formed in situ,while late veins are a result of continuous fluid migration and convergence.Furthermore,the veins continue to undergo modification even after formation.This study emphasizes that the formation of lamellar calcite veins in shale is a complex diagenetic process influenced by multiple factors:biology,organic matter,and inorganic processes,all operating at various stages throughout the shale's diagenetic history.展开更多
Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integratin...Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integrating process-based models(PBMs)with remote sensing data can enhance simulations from stand to regional scales,significantly improving the ability to simulate forest growth and carbon stock dynamics.However,the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited.In this study,we applied the parameterized 3-PG(Physiological Principles Predicting Growth)model across the Mengjiagang Forest Farm(MFF)to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation.The model was used to simulate average diameter at breast height(DBH)and total biomass,which were later validated with a wide range of observation data including sample plot data,forest management inventory data,and airborne laser scanning data.The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale,with determination coefficients ranging from 0.78 to 0.88.Based on the estimation of total biomass,we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m,which helps with relevant management advice.These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales.In addition,this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.展开更多
BACKGROUND Previous studies have indicated bidirectional associations between urate levels and inflammatory bowel disease(IBD),including ulcerative colitis(UC)and Crohn’s disease(CD).However,it remains unclear whethe...BACKGROUND Previous studies have indicated bidirectional associations between urate levels and inflammatory bowel disease(IBD),including ulcerative colitis(UC)and Crohn’s disease(CD).However,it remains unclear whether the observations are causal because of confounding factors.AIM To investigate the causal associations between urate levels and IBD using bidirec-tional Mendelian randomization(MR).METHODS Independent genetic variants for urate levels and IBD were selected as instru-mental variables from published genome-wide association studies(GWASs).Summary statistics for instrument-outcome associations were retrieved from three separate databases for IBD(the UK Biobank,the FinnGen database and a large GWAS meta-analysis)and one for urate levels(a large GWAS meta-analysis).MR analyses included the inverse-variance-weighted method,weighted-median estimator,MR-Egger and sensitivity analyses(MR-PRESSO).A meta-analysis was also conducted to merge the data from separate outcome databases using a fixed-effects model.RESULTS Genetically higher serum urate levels were strongly associated with an increased risk of UC[odds ratio(OR):1.95,95%confidence interval(CI):1.86-2.05]after outlier correction,and the ORs(95%CIs)for IBD and CD were 0.94(95%CI:0.86-1.03)and 0.91(95%CI:0.80-1.04),respectively.Animal studies have confirmed the positive association between urate levels and UC.Moreover,genetically predicted IBD was inversely related to urate levels(OR:0.97,95%CI:0.94-0.99).However,no association was observed between genetically influenced UC or CD and urate levels.CONCLUSION Urate levels might be risk factors for UC,whereas genetically predicted IBD was inversely associated with urate levels.These findings provide essential new insight for treating and preventing IBD.展开更多
To obtain high-performance lithium-sulfur(Li-S)batteries,it is necessary to rationally design electrocatalytic materials that can promote efficient sulfur electrochemical reactions.Herein,the robust heterostructured m...To obtain high-performance lithium-sulfur(Li-S)batteries,it is necessary to rationally design electrocatalytic materials that can promote efficient sulfur electrochemical reactions.Herein,the robust heterostructured material of nanoscale transition metal anchored on perovskite oxide was designed for efficient catalytic kinetics of the oxidation and reduction reactions of lithium polysulphide(Li PSs),and verified by density functional theory(DFT)calculations and experimental characterizations.Due to the strong interaction of nanoscale transition metals with Li PSs through chemical coupling,heterostructured materials(STO@M)(M=Fe,Ni,Cu)exhibit excellent catalytic activity for redox reactions of Li PSs.The bifunctional heterostructure material STO@Fe exhibits good rate performance and cycling stability as the cathode host,realizing a high-performance Li-S battery that can maintain stable cycling under rapid charge-discharge cycling.This study presents a novel approach to designing electrocatalytic materials for redox reactions of Li PSs,which promotes the development of fast charge-discharge Li-S batteries.展开更多
DEAR EDITOR,Astroviruses are known to cause gastroenteritis and diarrhea symptoms in various hosts.However,no information is currently available on any donkey astrovirus genome.In this study,we collected six intestina...DEAR EDITOR,Astroviruses are known to cause gastroenteritis and diarrhea symptoms in various hosts.However,no information is currently available on any donkey astrovirus genome.In this study,we collected six intestinal samples from donkey foals that died of severe diarrhea on a donkey farm in Shandong Province,China,in 2021.Based on metagenomic nextgeneration sequencing,a nearly complete donkey astrovirus 1(DAstV-1)sequence was detected as the only possible diarrhea-related mammalian virus.展开更多
Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern.Therefore,there is an urgent need to develop a low carbon building material.Geopolymers have become a hot topic due t...Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern.Therefore,there is an urgent need to develop a low carbon building material.Geopolymers have become a hot topic due to their environmental sustainability and the feasibility of immobilizing industrial waste.In this paper,steel slag(SS)fines were investigated as auxiliary materials of blast furnace slag(BFS)based geopolymer.The hydration heat properties,flowability,compressive strength,sorptivity coefficient,X-ray diffraction(XRD),and scanning electron microscopy(SEM)of the geopolymer pastes were determined.The results showed that the incorporation of SS weakened the reactivity of the BFS-based geopolymer paste and improved the flow values of the paste.The compressive strength of the geopolymer with 20%SS content reached 117 MPa at 28 d.The geopolymer specimens with high compressive strength showed a low sorptivity coefficient.The microscopic results showed that the addition of the appropriate amount of SS reduced the cracks,improved the density of the geopolymer,and produced a geopolymer composite with excellent mechanical properties.展开更多
The extremely low frequency(f<40 MHz)is a very important frequency band for modern radio astronomy observations.It is also a key frequency band for solar radio bursts,planetary radio bursts,fast radio bursts detect...The extremely low frequency(f<40 MHz)is a very important frequency band for modern radio astronomy observations.It is also a key frequency band for solar radio bursts,planetary radio bursts,fast radio bursts detected in the lunar space electromagnetic environment,and the Earth’s middle and upper atmosphere with low dispersion values.In this frequency band,the solar stellar activity,the early state of the universe,and the radiation characteristics of the planetary magnetosphere and plasma layer can be explored.Since there are few observations with effective spatial resolution in the extremely low frequency,it is highly possible to discover unknown astronomical phenomena on such a band in the future.In conjunction with low frequency radio observation on the far side of the Moon,we initially set up a novel low-frequency radio array in the Qitai station of Xinjiang Astronomical Observatory deep in Tianshan Mountains,Xinjiang,China on 2021 August 23.The array covers an operating frequency range of 1~90 MHz with a sensitivity of-78 dBm/125kHz,a dynamic range of 72 dB,and a typical gain value of 6 dBi,which can realize unattended all-weather observations.The two antennas due south of the Qitai Low-Frequency Radio Array were put into trial observations on 2021 May 28,and the very quiet electromagnetic environment of the station has been confirmed.So far,many solar radio bursts and other foreign signals have been detected.The results show that this novel low frequency radio array has the advantages of good performance,strong direction,and high antenna efficiency.It can play a unique role in Solar Cycle 25,and has a potential value in prospective collaborative observation between the Earth and space for extremely low frequency radio astronomy.展开更多
AIM:To investigate the efficacy and safety of propofol sedation for endoscopic retrograde cholangiopancreatography(ERCP).METHODS:Databases including PubMed,Embase,and the Cochrane Central Register of Controlled Trials...AIM:To investigate the efficacy and safety of propofol sedation for endoscopic retrograde cholangiopancreatography(ERCP).METHODS:Databases including PubMed,Embase,and the Cochrane Central Register of Controlled Trials updated as of October 2010 were searched.Main outcome measures were ERCP procedure duration,recovery time,incidence of hypotension and hypoxia.RESULTS:Six trials with a total of 663 patients were included.The pooled mean difference in ERCP procedure duration between the propofol and traditional sedative agents was-8.05(95%CI:-16.74 to 0.63),with no significant difference between the groups.Thepooled mean difference in the recovery time was-18.69(95%CI:-25.44 to-11.93),which showed a significant reduction with use of propofol sedation.Compared with traditional sedative agents,the pooled OR with propofol sedation for ERCP causing hypotension or hypoxia was 1.69(95%CI:0.82-3.50)and 0.90(95%CI:0.55-1.49),respectively,which indicated no significant difference between the groups.CONCLUSION:Propofol sedation during ERCP leads to shorter recovery time without an increase of cardiopulmonary side effects.Propofol sedation can provide adequate sedation during ERCP.展开更多
BACKGROUND Artificial intelligence in colonoscopy is an emerging field,and its application may help colonoscopists improve inspection quality and reduce the rate of missed polyps and adenomas.Several deep learning-bas...BACKGROUND Artificial intelligence in colonoscopy is an emerging field,and its application may help colonoscopists improve inspection quality and reduce the rate of missed polyps and adenomas.Several deep learning-based computer-assisted detection(CADe)techniques were established from small single-center datasets,and unrepresentative learning materials might confine their application and generalization in wide practice.Although CADes have been reported to identify polyps in colonoscopic images and videos in real time,their diagnostic performance deserves to be further validated in clinical practice.AIM To train and test a CADe based on multicenter high-quality images of polyps and preliminarily validate it in clinical colonoscopies.METHODS With high-quality screening and labeling from 55 qualified colonoscopists,a dataset consisting of over 71000 images from 20 centers was used to train and test a deep learning-based CADe.In addition,the real-time diagnostic performance of CADe was tested frame by frame in 47 unaltered full-ranged videos that contained 86 histologically confirmed polyps.Finally,we conducted a selfcontrolled observational study to validate the diagnostic performance of CADe in real-world colonoscopy with the main outcome measure of polyps per colonoscopy in Changhai Hospital.RESULTS The CADe was able to identify polyps in the test dataset with 95.0%sensitivity and 99.1%specificity.For colonoscopy videos,all 86 polyps were detected with 92.2%sensitivity and 93.6%specificity in frame-by-frame analysis.In the prospective validation,the sensitivity of CAD in identifying polyps was 98.4%(185/188).Folds,reflections of light and fecal fluid were the main causes of false positives in both the test dataset and clinical colonoscopies.Colonoscopists can detect more polyps(0.90 vs 0.82,P<0.001)and adenomas(0.32 vs 0.30,P=0.045)with the aid of CADe,particularly polyps<5 mm and flat polyps(0.65 vs 0.57,P<0.001;0.74 vs 0.67,P=0.001,respectively).However,high efficacy is not realized in colonoscopies with inadequate bowel preparation and withdrawal time(P=0.32;P=0.16,respectively).CONCLUSION CADe is feasible in the clinical setting and might help endoscopists detect more polyps and adenomas,and further confirmation is warranted.展开更多
In order to broaden the application of wrought Mg alloy sheets in the automotive industry,the influence of Ca and Sm alloying on the texture evolution,mechanical properties,and formability of a hot-rolled Mg-2Zn-0.2Mn...In order to broaden the application of wrought Mg alloy sheets in the automotive industry,the influence of Ca and Sm alloying on the texture evolution,mechanical properties,and formability of a hot-rolled Mg-2Zn-0.2Mn alloy was investigated by OM,XRD,SEM,EBSD,tensile tests,and Erichsen test.The results showed that the average grain size and basal texture intensity of Mg-2Zn-0.2Mn alloys were remarkably decreased after Ca and Sm additions.0.64 wt.%Ca or 0.48 wt.%Sm addition significantly increased the tensile strength,ductility and formability.Moreover,the synergetic addition of Sm and Ca improved the ductility and formability of Mg-2Zn-0.2Mn alloy,which was due to the change of Ca distribution and further reduction of the size of Ca-containing particles by Sm addition.The results provided a possibility of replacing RE elements with Ca and Sm in Mg alloys which bring about outstanding mechanical properties and formability.展开更多
基金supported in part by the National Natural Science Foundation of China (Grant Nos.62273314,U21A20141,and 51821003)Fundamental Research Program of Shanxi Province (Grant No.202303021224008)Shanxi Province Key Laboratory of Quantum Sensing and Precision Measure-ment (Grant No.201905D121001).
文摘It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.
基金the support of the National Natural Science Foundation of China(project number:41572123)。
文摘Lamellar calcite veins are prevalent in carbonate-rich,lacustrine dark shale.The formation mechanisms of these veins have been extensively debated,focusing on factors such as timing,depth,material source,and driving forces.This paper examines dark lacustrine shale lamellar calcite veins in the Paleogene strata of Dongying Depression,using various analytical techniques:petrography,isotope geochemistry,cathodoluminescence,inclusion thermometry,and electron probe micro-analysis.Two distinct types of calcite veins have been identified:granular calcite veins and sparry calcite veins.These two types differ significantly in color,grain structure,morphology,and inclusions.Through further investigation,it was observed that vein generation occurred from the shallow burial period to the maturation of organic matter,with a transition from granular calcite veins to sparry calcite veins.The granular calcite veins exhibit characteristics associated with the shallow burial period,including plastically deformed laminae and veins,the development of strawberry pyrite,the absence of oil and gas,weak fractionation in oxygen isotopes,and their contact relationship with sparry calcite veins.These granular calcite veins were likely influenced by the reduction of sulfate bacteria.On the other hand,sparry calcite veins with fibrous grains are antitaxial and closely linked to the evolution and maturation of organic matter.They contain oil and gas inclusions and show a distribution range of homogenization temperature between 90℃ and 120℃ and strong fractionation in oxygen isotopes,indicating formation during the hydrocarbon expulsion period.The carbon isotope analysis of the surrounding rocks and veins suggests that the material for vein formation originates from the shale itself,specifically authigenic micritic calcite modified by the action of methanogens.The opening of horizontal fractures and vein formation is likely driven by fluid overpressure resulting from undercompaction and hydrocarbon expulsion.Veins may form rapidly or through multi-stage composite processes.Early veins are predominantly formed in situ,while late veins are a result of continuous fluid migration and convergence.Furthermore,the veins continue to undergo modification even after formation.This study emphasizes that the formation of lamellar calcite veins in shale is a complex diagenetic process influenced by multiple factors:biology,organic matter,and inorganic processes,all operating at various stages throughout the shale's diagenetic history.
基金funded by National Key Research and Development Program(2023YFD220080430&2017YFD0600404)。
文摘Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integrating process-based models(PBMs)with remote sensing data can enhance simulations from stand to regional scales,significantly improving the ability to simulate forest growth and carbon stock dynamics.However,the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited.In this study,we applied the parameterized 3-PG(Physiological Principles Predicting Growth)model across the Mengjiagang Forest Farm(MFF)to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation.The model was used to simulate average diameter at breast height(DBH)and total biomass,which were later validated with a wide range of observation data including sample plot data,forest management inventory data,and airborne laser scanning data.The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale,with determination coefficients ranging from 0.78 to 0.88.Based on the estimation of total biomass,we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m,which helps with relevant management advice.These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales.In addition,this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.
基金Supported by National Natural Science Foundation of China,No.82170567,No.81873546,No.82170568,and No.82300627Program of Shanghai Academic/Technology Research Leader,No.22XD1425000+4 种基金The"Shu Guang"project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation,No.19SG30,ChinaDeep Blue Project of Naval Medical University(Pilot Talent Plan)The Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission,No.22CGA42The Shanghai Sailing Program,No.23YF1458600and Shanghai Natural Science Foundation,No.23ZR1478700.
文摘BACKGROUND Previous studies have indicated bidirectional associations between urate levels and inflammatory bowel disease(IBD),including ulcerative colitis(UC)and Crohn’s disease(CD).However,it remains unclear whether the observations are causal because of confounding factors.AIM To investigate the causal associations between urate levels and IBD using bidirec-tional Mendelian randomization(MR).METHODS Independent genetic variants for urate levels and IBD were selected as instru-mental variables from published genome-wide association studies(GWASs).Summary statistics for instrument-outcome associations were retrieved from three separate databases for IBD(the UK Biobank,the FinnGen database and a large GWAS meta-analysis)and one for urate levels(a large GWAS meta-analysis).MR analyses included the inverse-variance-weighted method,weighted-median estimator,MR-Egger and sensitivity analyses(MR-PRESSO).A meta-analysis was also conducted to merge the data from separate outcome databases using a fixed-effects model.RESULTS Genetically higher serum urate levels were strongly associated with an increased risk of UC[odds ratio(OR):1.95,95%confidence interval(CI):1.86-2.05]after outlier correction,and the ORs(95%CIs)for IBD and CD were 0.94(95%CI:0.86-1.03)and 0.91(95%CI:0.80-1.04),respectively.Animal studies have confirmed the positive association between urate levels and UC.Moreover,genetically predicted IBD was inversely related to urate levels(OR:0.97,95%CI:0.94-0.99).However,no association was observed between genetically influenced UC or CD and urate levels.CONCLUSION Urate levels might be risk factors for UC,whereas genetically predicted IBD was inversely associated with urate levels.These findings provide essential new insight for treating and preventing IBD.
基金financially supported in part by the National Key R&D Program of China (2020YFA0406103)the National Natural Science Foundation of China (21725102, 22122506, 91961106, 22075267, 22109148)+4 种基金Strategic Priority Research Program of the Chinese Academy of Sciences (XDPB14)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2019444)the Hundred Talents Program of the Chinese Academy of SciencesFundamental Research Funds for the Central Universities (WK2060000039)support from the USTC Center for Micro- and Nanoscale Research and Fabrication。
基金supported by the National Natural Science Foundation of China (22179007)。
文摘To obtain high-performance lithium-sulfur(Li-S)batteries,it is necessary to rationally design electrocatalytic materials that can promote efficient sulfur electrochemical reactions.Herein,the robust heterostructured material of nanoscale transition metal anchored on perovskite oxide was designed for efficient catalytic kinetics of the oxidation and reduction reactions of lithium polysulphide(Li PSs),and verified by density functional theory(DFT)calculations and experimental characterizations.Due to the strong interaction of nanoscale transition metals with Li PSs through chemical coupling,heterostructured materials(STO@M)(M=Fe,Ni,Cu)exhibit excellent catalytic activity for redox reactions of Li PSs.The bifunctional heterostructure material STO@Fe exhibits good rate performance and cycling stability as the cathode host,realizing a high-performance Li-S battery that can maintain stable cycling under rapid charge-discharge cycling.This study presents a novel approach to designing electrocatalytic materials for redox reactions of Li PSs,which promotes the development of fast charge-discharge Li-S batteries.
基金supported by the National Key Research and Development Program of China (2018YFA0903000,2021YFC0863400)Key Project of Beijing University of Chemical Technology (XK1803-06)Donkey Industry Innovation Team Program of Modern Agricultural Technology System from Shandong Province,China (SDAIT-27)。
文摘DEAR EDITOR,Astroviruses are known to cause gastroenteritis and diarrhea symptoms in various hosts.However,no information is currently available on any donkey astrovirus genome.In this study,we collected six intestinal samples from donkey foals that died of severe diarrhea on a donkey farm in Shandong Province,China,in 2021.Based on metagenomic nextgeneration sequencing,a nearly complete donkey astrovirus 1(DAstV-1)sequence was detected as the only possible diarrhea-related mammalian virus.
基金Funding Statement:This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern.Therefore,there is an urgent need to develop a low carbon building material.Geopolymers have become a hot topic due to their environmental sustainability and the feasibility of immobilizing industrial waste.In this paper,steel slag(SS)fines were investigated as auxiliary materials of blast furnace slag(BFS)based geopolymer.The hydration heat properties,flowability,compressive strength,sorptivity coefficient,X-ray diffraction(XRD),and scanning electron microscopy(SEM)of the geopolymer pastes were determined.The results showed that the incorporation of SS weakened the reactivity of the BFS-based geopolymer paste and improved the flow values of the paste.The compressive strength of the geopolymer with 20%SS content reached 117 MPa at 28 d.The geopolymer specimens with high compressive strength showed a low sorptivity coefficient.The microscopic results showed that the addition of the appropriate amount of SS reduced the cracks,improved the density of the geopolymer,and produced a geopolymer composite with excellent mechanical properties.
基金supported by“SKA(No.2020SKA0110300)”“Yunnan Key Laboratory of the Solar Physics and Space Science(No.YNSPCC202220),”+3 种基金“The open project of the Key Laboratory in Xinjiang Uygur Autonomous Region of China(No.2023D04058)”the“National Natural Science Foundation of China(No.11941003)”“The Chinese Academy of Sciences Foundation of the young scholars of western(No.2020-XBQNXZ-019)”“The 2018 Project of Xinjiang Uygur Autonomous Region of China for Heaven Lake Hundred-Talent Program”。
文摘The extremely low frequency(f<40 MHz)is a very important frequency band for modern radio astronomy observations.It is also a key frequency band for solar radio bursts,planetary radio bursts,fast radio bursts detected in the lunar space electromagnetic environment,and the Earth’s middle and upper atmosphere with low dispersion values.In this frequency band,the solar stellar activity,the early state of the universe,and the radiation characteristics of the planetary magnetosphere and plasma layer can be explored.Since there are few observations with effective spatial resolution in the extremely low frequency,it is highly possible to discover unknown astronomical phenomena on such a band in the future.In conjunction with low frequency radio observation on the far side of the Moon,we initially set up a novel low-frequency radio array in the Qitai station of Xinjiang Astronomical Observatory deep in Tianshan Mountains,Xinjiang,China on 2021 August 23.The array covers an operating frequency range of 1~90 MHz with a sensitivity of-78 dBm/125kHz,a dynamic range of 72 dB,and a typical gain value of 6 dBi,which can realize unattended all-weather observations.The two antennas due south of the Qitai Low-Frequency Radio Array were put into trial observations on 2021 May 28,and the very quiet electromagnetic environment of the station has been confirmed.So far,many solar radio bursts and other foreign signals have been detected.The results show that this novel low frequency radio array has the advantages of good performance,strong direction,and high antenna efficiency.It can play a unique role in Solar Cycle 25,and has a potential value in prospective collaborative observation between the Earth and space for extremely low frequency radio astronomy.
基金Supported by The grants from the Department of Anesthesiology and Intensive Care of Changhai Hospital,Shanghai,China
文摘AIM:To investigate the efficacy and safety of propofol sedation for endoscopic retrograde cholangiopancreatography(ERCP).METHODS:Databases including PubMed,Embase,and the Cochrane Central Register of Controlled Trials updated as of October 2010 were searched.Main outcome measures were ERCP procedure duration,recovery time,incidence of hypotension and hypoxia.RESULTS:Six trials with a total of 663 patients were included.The pooled mean difference in ERCP procedure duration between the propofol and traditional sedative agents was-8.05(95%CI:-16.74 to 0.63),with no significant difference between the groups.Thepooled mean difference in the recovery time was-18.69(95%CI:-25.44 to-11.93),which showed a significant reduction with use of propofol sedation.Compared with traditional sedative agents,the pooled OR with propofol sedation for ERCP causing hypotension or hypoxia was 1.69(95%CI:0.82-3.50)and 0.90(95%CI:0.55-1.49),respectively,which indicated no significant difference between the groups.CONCLUSION:Propofol sedation during ERCP leads to shorter recovery time without an increase of cardiopulmonary side effects.Propofol sedation can provide adequate sedation during ERCP.
基金the National Key R&D Program of China,No.2018YFC1313103the National Natural Science Foundation of China,No.81670473 and No.81873546+1 种基金the“Shu Guang”Project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation,No.19SG30the Key Area Research and Development Program of Guangdong Province,China,No.2018B010111001.
文摘BACKGROUND Artificial intelligence in colonoscopy is an emerging field,and its application may help colonoscopists improve inspection quality and reduce the rate of missed polyps and adenomas.Several deep learning-based computer-assisted detection(CADe)techniques were established from small single-center datasets,and unrepresentative learning materials might confine their application and generalization in wide practice.Although CADes have been reported to identify polyps in colonoscopic images and videos in real time,their diagnostic performance deserves to be further validated in clinical practice.AIM To train and test a CADe based on multicenter high-quality images of polyps and preliminarily validate it in clinical colonoscopies.METHODS With high-quality screening and labeling from 55 qualified colonoscopists,a dataset consisting of over 71000 images from 20 centers was used to train and test a deep learning-based CADe.In addition,the real-time diagnostic performance of CADe was tested frame by frame in 47 unaltered full-ranged videos that contained 86 histologically confirmed polyps.Finally,we conducted a selfcontrolled observational study to validate the diagnostic performance of CADe in real-world colonoscopy with the main outcome measure of polyps per colonoscopy in Changhai Hospital.RESULTS The CADe was able to identify polyps in the test dataset with 95.0%sensitivity and 99.1%specificity.For colonoscopy videos,all 86 polyps were detected with 92.2%sensitivity and 93.6%specificity in frame-by-frame analysis.In the prospective validation,the sensitivity of CAD in identifying polyps was 98.4%(185/188).Folds,reflections of light and fecal fluid were the main causes of false positives in both the test dataset and clinical colonoscopies.Colonoscopists can detect more polyps(0.90 vs 0.82,P<0.001)and adenomas(0.32 vs 0.30,P=0.045)with the aid of CADe,particularly polyps<5 mm and flat polyps(0.65 vs 0.57,P<0.001;0.74 vs 0.67,P=0.001,respectively).However,high efficacy is not realized in colonoscopies with inadequate bowel preparation and withdrawal time(P=0.32;P=0.16,respectively).CONCLUSION CADe is feasible in the clinical setting and might help endoscopists detect more polyps and adenomas,and further confirmation is warranted.
基金financially supported by the National Key Research and Development Program of China(Nos.2018YFA0702903,2016YFB0701204)the Fundamental Research Funds for the Central Universities,China(No.DUT20GF102)。
文摘In order to broaden the application of wrought Mg alloy sheets in the automotive industry,the influence of Ca and Sm alloying on the texture evolution,mechanical properties,and formability of a hot-rolled Mg-2Zn-0.2Mn alloy was investigated by OM,XRD,SEM,EBSD,tensile tests,and Erichsen test.The results showed that the average grain size and basal texture intensity of Mg-2Zn-0.2Mn alloys were remarkably decreased after Ca and Sm additions.0.64 wt.%Ca or 0.48 wt.%Sm addition significantly increased the tensile strength,ductility and formability.Moreover,the synergetic addition of Sm and Ca improved the ductility and formability of Mg-2Zn-0.2Mn alloy,which was due to the change of Ca distribution and further reduction of the size of Ca-containing particles by Sm addition.The results provided a possibility of replacing RE elements with Ca and Sm in Mg alloys which bring about outstanding mechanical properties and formability.