Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface e...Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.展开更多
BACKGROUND Surgical resection is the preferred method for patients with complex liver cancer.But the tumor is in a special position, the surgery is highly risky, postoperative complications can easily occur, and the p...BACKGROUND Surgical resection is the preferred method for patients with complex liver cancer.But the tumor is in a special position, the surgery is highly risky, postoperative complications can easily occur, and the prognosis is not ideal.AIM To investigate the effectiveness of surgical resection for complex liver cancer and its influencing factors.METHODS Fifty-seven patients who had complicated liver cancer and underwent surgical resection at our hospital from August 2015 to August 2016 were enrolled in this study. All patients were followed for three years, and their postoperative complications, survival, and factors that impacted their survival were analyzed.RESULTS The total incidence of postoperative complications was 45.61%, and the incidence of pleural effusion was the highest at 28.07%. There were no correlations between the 2-year and 3-year survival rates and sex, age, and Hbs Ag of the patients(P >0.05). In terms of pathological parameters, the 2-year and 3-year survival rates were significantly different according to the presence of a tumor capsule, degree of liver cirrhosis, satellite or focal lesions, hepatic vein thrombosis, portal vein tumor thrombus, and intraoperative blood loss(P < 0.05).CONCLUSIONThe effectiveness of surgical resection for complex hepatocellular carcinoma may be affected by factors such as the presence of a tumor capsule, cirrhosis degree,satellite or focal lesions, hepatic vein embolization, portal vein tumor thrombus,and intraoperative blood loss. Therefore, these factors should be controlled and prevented during surgery to help improve patient survival after surgery.展开更多
High-entropy alloys are suitable for use as a binder for cemented carbides duo to outstanding mechanical, oxidation and wear behavior. Therefore, high-entropy alloy was selected to replace Co and Ni metal bond in this...High-entropy alloys are suitable for use as a binder for cemented carbides duo to outstanding mechanical, oxidation and wear behavior. Therefore, high-entropy alloy was selected to replace Co and Ni metal bond in this study. The results of X-ray diffraction analysis show that CoCrNiCuMn high-entropy alloy is stabilized in the cemented carbide system. Scanning electron microscope(SEM) fractural morphologies of the cemented carbides added with CoCrNiCuMn show that CoCrNiCuMn distributes in grain boundaries, and the grains are bound tightly together. Furthermore, SEM fractural morphologies of the cemented carbides with 5 wt%, 7 wt%, and 10 wt% CoCrNiCuMn show that CoCrNiCuMn slows the growth of grains, which effectively binders the grains, prevents the generation and propagation of cracks, and finally, greatly improves the toughness of the cemented carbides.According to the results observed in the cemented carbides containing different amounts of CoCrNiCuMn, the hardness level gradually increases with the amount of CoCrNiCuMn; however, a reverse trend is seen in the toughness level. The cemented carbide with 10 wt% CoCrNiCuMn shows the highest toughness value of 7.05 MPa·m^1/2.展开更多
Various isothermal compression tests are carried out on an ultrahigh carbon steel (1.2% C in mass percent), initially quenched or spheroidized, using a Gleeble-3500 system. The true stress is observed to decrease wi...Various isothermal compression tests are carried out on an ultrahigh carbon steel (1.2% C in mass percent), initially quenched or spheroidized, using a Gleeble-3500 system. The true stress is observed to decrease with increas ing temperature and decreasing strain rate. The true stress of the initially quenched steel is lower than that of the ini- tially spheroidized steel at high deformation temperature (700 ~C) and low deformation strain rate (0. 001 s-1 ). The value of the deformation activation energy (Q) of the initially quenched steel (331.56 kJ/mol) is higher than that of the initially spheroidized steel (297.94 kJ/mol). The initially quenched steel has lower efficiency of power dissipation and better processability than the initially spheroidized steel. The warm compression promotes the fragmentation and the spheroidization of lamellar cementites in the initially quenched steel. The fragmentation of lamellar cementites is the spheroidizing mechanism of the eementites in the initially quenched steel. Results of transmission electron microscope investigation showed that fine grains with high angle boundaries are obtained by deformation of the initially quenched steel.展开更多
基金supported by the National Basic Research Program of China (Grant 2012CB937500)the National Natural Science Foundation of China (Grants 11422219, 11227202, 11372217, 11272232)+1 种基金the Program for New Century Excellent Talents in University (Grant NCET-13)China Scholarship Council (201308120092)
文摘Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.
文摘BACKGROUND Surgical resection is the preferred method for patients with complex liver cancer.But the tumor is in a special position, the surgery is highly risky, postoperative complications can easily occur, and the prognosis is not ideal.AIM To investigate the effectiveness of surgical resection for complex liver cancer and its influencing factors.METHODS Fifty-seven patients who had complicated liver cancer and underwent surgical resection at our hospital from August 2015 to August 2016 were enrolled in this study. All patients were followed for three years, and their postoperative complications, survival, and factors that impacted their survival were analyzed.RESULTS The total incidence of postoperative complications was 45.61%, and the incidence of pleural effusion was the highest at 28.07%. There were no correlations between the 2-year and 3-year survival rates and sex, age, and Hbs Ag of the patients(P >0.05). In terms of pathological parameters, the 2-year and 3-year survival rates were significantly different according to the presence of a tumor capsule, degree of liver cirrhosis, satellite or focal lesions, hepatic vein thrombosis, portal vein tumor thrombus, and intraoperative blood loss(P < 0.05).CONCLUSIONThe effectiveness of surgical resection for complex hepatocellular carcinoma may be affected by factors such as the presence of a tumor capsule, cirrhosis degree,satellite or focal lesions, hepatic vein embolization, portal vein tumor thrombus,and intraoperative blood loss. Therefore, these factors should be controlled and prevented during surgery to help improve patient survival after surgery.
基金financially supported by the Hebei Province Natural Science Foundation (No.E2016203425)
文摘High-entropy alloys are suitable for use as a binder for cemented carbides duo to outstanding mechanical, oxidation and wear behavior. Therefore, high-entropy alloy was selected to replace Co and Ni metal bond in this study. The results of X-ray diffraction analysis show that CoCrNiCuMn high-entropy alloy is stabilized in the cemented carbide system. Scanning electron microscope(SEM) fractural morphologies of the cemented carbides added with CoCrNiCuMn show that CoCrNiCuMn distributes in grain boundaries, and the grains are bound tightly together. Furthermore, SEM fractural morphologies of the cemented carbides with 5 wt%, 7 wt%, and 10 wt% CoCrNiCuMn show that CoCrNiCuMn slows the growth of grains, which effectively binders the grains, prevents the generation and propagation of cracks, and finally, greatly improves the toughness of the cemented carbides.According to the results observed in the cemented carbides containing different amounts of CoCrNiCuMn, the hardness level gradually increases with the amount of CoCrNiCuMn; however, a reverse trend is seen in the toughness level. The cemented carbide with 10 wt% CoCrNiCuMn shows the highest toughness value of 7.05 MPa·m^1/2.
基金Item Sponsored by National Natural Science Foundation of China(50271060)Program for Changjiang Scholars and Innovative Research Team in University of China(IRT0650)Natural Science Foundation of Hebei Province of China(503291)
文摘Various isothermal compression tests are carried out on an ultrahigh carbon steel (1.2% C in mass percent), initially quenched or spheroidized, using a Gleeble-3500 system. The true stress is observed to decrease with increas ing temperature and decreasing strain rate. The true stress of the initially quenched steel is lower than that of the ini- tially spheroidized steel at high deformation temperature (700 ~C) and low deformation strain rate (0. 001 s-1 ). The value of the deformation activation energy (Q) of the initially quenched steel (331.56 kJ/mol) is higher than that of the initially spheroidized steel (297.94 kJ/mol). The initially quenched steel has lower efficiency of power dissipation and better processability than the initially spheroidized steel. The warm compression promotes the fragmentation and the spheroidization of lamellar cementites in the initially quenched steel. The fragmentation of lamellar cementites is the spheroidizing mechanism of the eementites in the initially quenched steel. Results of transmission electron microscope investigation showed that fine grains with high angle boundaries are obtained by deformation of the initially quenched steel.