Inspired by the transmission characteristics of the coronavirus disease 2019(COVID-19),an epidemic model with quarantine and standard incidence rate is first developed,then a novel analysis approach is proposed for fi...Inspired by the transmission characteristics of the coronavirus disease 2019(COVID-19),an epidemic model with quarantine and standard incidence rate is first developed,then a novel analysis approach is proposed for finding the ultimate lower bound of the number of infected individuals,which means that the epidemic is uniformly persistent if the control reproduction number R_(c)>1.This approach can be applied to the related biomat hem at ical models,and some existing works can be improved by using that.In addition,the infection-free equilibrium V^(0)of the model is locally asymptotically stable(LAS)if R_(c)<1 and linearly stable if R_(c)=1;while V^(0)is unstable if R_(c)>1.展开更多
基金partially supported by the National Natural Science Foundation of China(Nos.11901027,11971273and 12126426)the Major Program of the National Natural Science Foundation of China(No.12090014)+4 种基金the State Key Program of the National Natural Science Foundation of China(No.12031020)the Natural Science Foundation of Shandong Province(No.ZR2018MA004)the China Postdoctoral Science Foundation(No.2021M703426)the Pyramid Talent Training Project of BUCEA(No.JDYC20200327)the BUCEA Post Graduate Innovation Project(No.PG2022143)。
文摘Inspired by the transmission characteristics of the coronavirus disease 2019(COVID-19),an epidemic model with quarantine and standard incidence rate is first developed,then a novel analysis approach is proposed for finding the ultimate lower bound of the number of infected individuals,which means that the epidemic is uniformly persistent if the control reproduction number R_(c)>1.This approach can be applied to the related biomat hem at ical models,and some existing works can be improved by using that.In addition,the infection-free equilibrium V^(0)of the model is locally asymptotically stable(LAS)if R_(c)<1 and linearly stable if R_(c)=1;while V^(0)is unstable if R_(c)>1.