Volume is an important attribute used in many forest management decisions.Data from 83 fixed-area plots located in central New Brunswick,Canada,are used to examine how different measures of stand-level diameter and he...Volume is an important attribute used in many forest management decisions.Data from 83 fixed-area plots located in central New Brunswick,Canada,are used to examine how different measures of stand-level diameter and height influence volume prediction using a stand-level variant of Honer's(1967)volume equation.When density was included in the models(Volume=f(Diameter,Height,Density))choice of diameter measure was more important than choice of height measure.When density was not included(Volume=f(Diameter,Height)),the opposite was true.For models with density included,moment-based estimators of stand diameter and height performed better than all other measures.For models without density,largest tree estimators of stand diameter and height performed better than other measures.The overall best equation used quadratic mean diameter,Lorey's height,and density(root mean square error=5.26 m^3·ha^(-1);1.9%relative error).The best equation without density used mean diameter of the largest trees needed to calculate a stand density index of 400 and the mean height of the tallest 400 trees per ha(root mean square error=32.08 m^(3)·ha^(-1);11.8%relative error).The results of this study have some important implications for height subsampling and LiDAR-derived forest inventory analyses.展开更多
A pharmacological network of"component/target/pathway"for Rhizoma coptidis against type 2 diabetes(T2D)was established by network-pharmacology,and the active components of Rhizoma coptidis and its mechanism ...A pharmacological network of"component/target/pathway"for Rhizoma coptidis against type 2 diabetes(T2D)was established by network-pharmacology,and the active components of Rhizoma coptidis and its mechanism were explored.A literature-based and database study of the components of Rhizoma coptidis was carried out and screened by ADME paramcters.The targets of Rhizoma coptidis were predicted by the ligand similarity method.Related pathways were analyzed with databases,and software was used to construct a "component/target path" network.The mechanism was further confirmed by GEO database with R software.A total of 12 active components were screened from Rhizoma coptidis,involving 57 targets including MAPKI,STAT3,INSR,and 38 signaling pathways were associated with T2D.Related signaling pathways included essential pathways for T2D such as insulin resistance,and pathways that had indirect effect on T2D.It was suggested that Rhizoma coptidis may exert its effects against T2D through multi-component,multi-target,and multi-pathway forms.展开更多
A new benzothiadiazole-based D-A-D hole transport material(DTBT)has been designed and synthesized with a more planar structure by introducing of thiophene bridges.The results indicate a lower band gap and quite higher...A new benzothiadiazole-based D-A-D hole transport material(DTBT)has been designed and synthesized with a more planar structure by introducing of thiophene bridges.The results indicate a lower band gap and quite higher hole mobility for the DTBT.Furthermore,the enhancement in molecular planarity with simple thiophene unit increases the hole mobility of DTBT(8.77×10^-4cm^2 V^-1s^-1)by about 40%.And when DTBT is used as hole transport material in perovskite solar cells,the photoelectric conversion efficiency of the corresponding dopant-free devices is also significantly improved compared with that of the conventional BT model molecule without thiophene.In terms of device stability,DTBT-based devices show a favorable long-term stability,which keep 83%initial efficiency after 15 days.Therefore,the introducing of thiophene bridges in D-A-D typed HTMs can improve the molecular planarity effectively,thereby increasing the hole mobility and improving device performance.展开更多
Searching for two-dimensional(2 D) stable materials with direct band gap and high carrier mobility has attracted great attention for their electronic device applications.Using the first principles calculations and p...Searching for two-dimensional(2 D) stable materials with direct band gap and high carrier mobility has attracted great attention for their electronic device applications.Using the first principles calculations and particle swarm optimization(PSO) method,we predict a new 2 D stable material(HfNZ monolayer) with the global minimum of 2 D space.The HfNZ monolayer possesses direct band gap(~1.46 eV) and it is predicted to have high carrier mobilities(~103 cm2·V-1·s-1)from deformation potential theory.The direct band gap can be well maintained and flexibly modulated by applying an easily external strain under the strain conditions.In addition,the newly predicted HfN2 monolayer possesses good thermal,dynamical,and mechanical stabilities,which are verified by ab initio molecular dynamics simulations,phonon dispersion and elastic constants.These results demonstrate that HfN2 monolayer is a promising candidate in future microelectronic devices.展开更多
Projection-based 3D bioprinting(PBP):a powerful method to fabricate 3D cellular structures Three-dimensional(3D)bioprinting has played an important role in tissue engineering and regenerative medicine areas over the p...Projection-based 3D bioprinting(PBP):a powerful method to fabricate 3D cellular structures Three-dimensional(3D)bioprinting has played an important role in tissue engineering and regenerative medicine areas over the past decade[1].Different from traditional cell cultures in Petri dishes,3D bioprinting can build bionic structures with a better potential to become artificial organ substitutes[2–4].With the development of photocurable biomaterials,the projection-based 3D printing method has been successfully applied in biological research[5,6].展开更多
To improve the accuracy of microseismic inversion,seismic anisotropy and moment tensor source should be carefully considered in the forward modelling stage.In this study,3D microseismic anisotropy wave forward modelli...To improve the accuracy of microseismic inversion,seismic anisotropy and moment tensor source should be carefully considered in the forward modelling stage.In this study,3D microseismic anisotropy wave forward modelling with a moment tensor source was proposed.The modelling was carried out based on a rotated-staggered-grid(RSG)scheme.In contrast to staggered-grids,the RSG scheme defines the velocity components and densities at the same grid,as do the stress components and elastic parameters.Therefore,the elastic moduli do not need to be interpolated.In addition,the detailed formulation and implementation of moment-tensor source loaded on the RSG was presented by equating the source to the stress increments.Meanwhile,the RSG-based 3D wave equation forward modelling was performed in parallel using compute unified device architecture(CUDA)programming on a graphics processing unit(GPU)to improve its efficiency.Numerical simulations including homogeneous and anisotropic models were carried out using the method proposed in this paper,and compared with other methods to prove the reliability of this method.Furthermore,the high efficiency of the proposed approach was evaluated.The results show that the computational efficiency of proposed method can be improved by about two orders of magnitude compared with traditional central processing unit(CPU)computing methods.It could not only help the analysis of microseismic full wavefield records,but also provide support for passive source inversion,including location and focal mechanism inversion,and velocities inversion.展开更多
Micro-/nano-patterns on hydrogels are widely used in cell patterning.However,manufacturing molds with traditional lithography is time-consuming and expensive.In addition,the excessive demolding force can easily damage...Micro-/nano-patterns on hydrogels are widely used in cell patterning.However,manufacturing molds with traditional lithography is time-consuming and expensive.In addition,the excessive demolding force can easily damage patterns since biocompatible hydrogels are ultra-soft or brittle.Here,we presented a novel method for rapid and mass fabrication of cell patterns.High-precision three-dimensional(3D)printing was used to manufacture a mold with a resolution of 2µm,and the gelatin-based hydrogel was cured by thermal–photo-crosslinking so that the low-concentration and low-substitutionrate hydrogel could be demolded successfully.We found that pre-cooling before illumination made gelatin-based hydrogels resilient due to the partial regain of triple-helix structures.With this method,arbitrarily customized hydrogel patterns with a feature size of 6–80µm can be fabricated stably and at low cost.When cardiomyocytes were seeded on ultra-soft hydrogels with parallel groove structures,a consistent and spontaneous beating with 216 beats per minute(BPM)could be observed,approaching the natural beating rate of rat hearts(300 BPM).Overall,this work provides a general scheme for manufacturing cell patterns which has great potential for cell ethology and tissue repair.展开更多
With the emergence of large-scale knowledge base,how to use triple information to generate natural questions is a key technology in question answering systems.The traditional way of generating questions require a lot ...With the emergence of large-scale knowledge base,how to use triple information to generate natural questions is a key technology in question answering systems.The traditional way of generating questions require a lot of manual intervention and produce lots of noise.To solve these problems,we propose a joint model based on semi-automated model and End-to-End neural network to automatically generate questions.The semi-automated model can generate question templates and real questions combining the knowledge base and center graph.The End-to-End neural network directly sends the knowledge base and real questions to BiLSTM network.Meanwhile,the attention mechanism is utilized in the decoding layer,which makes the triples and generated questions more relevant.Finally,the experimental results on SimpleQuestions demonstrate the effectiveness of the proposed approach.展开更多
In this paper,for design of large-scale electromagnetic problems,a novel robust global optimization algorithm based on surrogate models is presented.The proposed algorithm can automatically select a proper meta-model ...In this paper,for design of large-scale electromagnetic problems,a novel robust global optimization algorithm based on surrogate models is presented.The proposed algorithm can automatically select a proper meta-model technique among multiple alternatives.In this paper,three representative meta-modeling techniques including ordinary Kriging,universal Kriging,and response surface method with multi-quadratic radial basis functions are applied.In each optimization iteration,the above three models are used for parallel calculation.The proposed hybrid surrogate model optimization algorithm synthesizes advantages of these different meta-models.Without verification of a specific meta-model,a suitable one for the engineering problem to be analyzed is automatically selected.Therefore,the proposed algorithm intends to make a better trade-off between numerical efficiency and searching accuracy for solving engineering problems,which are characterized by stronger non-linearity,higher complexity,non-convex feasible region,and expensive performance analysis.展开更多
Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and...Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking.Here,we present an innovative biomimetic controllable strain membrane(BCSM)at an air–liquid interface(ALI)to reconstruct alveolar respiration.The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone(PCL)mesh,coated with a hydrogel substrate—to simulate the important functions(such as stiffness,porosity,wettability,and ALI)of alveolar microenvironments,and seeded pulmonary epithelial cells and vascular endothelial cells on either side,respectively.Inspired by papercutting,the BCSM was fabricated in the plane while it operated in three dimensions.A series of the topological structure of the BCSM was designed to control various local-area strain,mimicking alveolar varied deformation.Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition,which might be effective in preventing ventilator-induced lung injury.The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future,such as in drug toxicology and metabolism.展开更多
As the dual task of question answering,question generation(QG)is a significant and challenging task that aims to generate valid and fluent questions from a given paragraph.The QG task is of great significance to quest...As the dual task of question answering,question generation(QG)is a significant and challenging task that aims to generate valid and fluent questions from a given paragraph.The QG task is of great significance to question answering systems,conversational systems,and machine reading comprehension systems.Recent sequence to sequence neural models have achieved outstanding performance in English and Chinese QG tasks.However,the task of Tibetan QG is rarely mentioned.The key factor impeding its development is the lack of a public Tibetan QG dataset.Faced with this challenge,the present paper first collects 425 articles from the Tibetan Wikipedia website and constructs 7,234 question–answer pairs through crowdsourcing.Next,we propose a Tibetan QG model based on the sequence to sequence framework to generate Tibetan questions from given paragraphs.Secondly,in order to generate answer-aware questions,we introduce an attention mechanism that can capture the key semantic information related to the answer.Meanwhile,we adopt a copy mechanism to copy some words in the paragraph to avoid generating unknown or rare words in the question.Finally,experiments show that our model achieves higher performance than baseline models.We also further explore the attention and copy mechanisms,and prove their effectiveness through experiments.展开更多
Three-dimensional type-ⅡWeyl fermions possess overtilted cone-like low-energy band dispersion.Unlike the closed ellipsoidal Fermi surface for type-ⅠWeyl fermions,the Fermi surface is an open hyperboloid for type-ⅡW...Three-dimensional type-ⅡWeyl fermions possess overtilted cone-like low-energy band dispersion.Unlike the closed ellipsoidal Fermi surface for type-ⅠWeyl fermions,the Fermi surface is an open hyperboloid for type-ⅡWeyl fermions.We evaluate the spin and density susceptibility of type-ⅡWeyl fermions with repulsive S-wave interaction by means of Green’s functions.We obtain the particle–hole continuum along the tilted momentum direction and perpendicular to the tilted momentum direction respectively.We find the zero sound mode in some repulsive interaction strengths by numerically solving the pole equations of the susceptibility within the random-phase approximation.展开更多
Integrating electrochemical reduction of CO_(2)and electrochemical oxidation to recycle degraded superalloys is a promising solution to ease resource scarcity and safeguard environmental sustainability.Herein,we propo...Integrating electrochemical reduction of CO_(2)and electrochemical oxidation to recycle degraded superalloys is a promising solution to ease resource scarcity and safeguard environmental sustainability.Herein,we propose an electrochemical technique for the conversion of bulk superalloy scraps and CO_(2)into oxide powder at the anode and solid carbon at the cathode,respectively.In particular,a borax-modifi ed CaCl_(2)-based molten salt electrolyte is used for enhancing the electrochemical oxidation of superalloy scraps.At a temperature of 700℃and a voltage of 2.8 V,90.55 wt.%of alloy scraps were oxidized in a molten CaCl_(2)–NaCl–CaCO_(3)–Na_(2)B_(4)O_(7)with an acid–base ratio(K_(a/b))of 1.The synergy of Cl−and B_(4)O_(7)2−of electrolyte prevents the passivation of the alloy anode and enables continuous oxidation.Furthermore,the Ni and Co in the anode products are recovered by sulfation roasting with recovery efficiencies of 85.58%and 95.27%for Ni and Co,respectively.Overall,modulating the alkalinity of the electrolyte for enhancing oxidation/pulverization of alloy scrap anode provides new insight into electrochemically recovering superalloy scraps.展开更多
Connectivity of two-qubit logic gates plays a crucial and indispensable role in quantum computation research.For the cold atom qubit platform,while the two-qubit Rydberg blockade gate has recently made rapid experimen...Connectivity of two-qubit logic gates plays a crucial and indispensable role in quantum computation research.For the cold atom qubit platform,while the two-qubit Rydberg blockade gate has recently made rapid experimental progress,a pressing challenge is to improve connectivity in pursuit of genuine scalability without sacrificing speed or fidelity.A significant advancement in this direction can be achieved by introducing an extra buffer atom to extend the two-qubit gate beyond purely nearest-neighbor two-body interactions.The buffer atom couples with the two qubit atoms through nearest-neighbor interactions,even though the qubit atoms do not directly exert any physical influence on each other.The established method of off-resonant modulated driving(ORMD)is not only convenient but also lays the groundwork for this latest development.Although the atomic linkage structure here exhibits more complex interactions compared to previous two-body systems,the population can satisfactorily return to the ground state after the ground-Rydberg transition with a properly designed modulation waveform.This can be achieved through one-photon and two-photon ground-Rydberg transitions in common practices.Furthermore,with buffer atom relay or similar structures,it is possible to realize a two-qubit entangling gate between two distant qubit atoms.In addition to demonstrating that such solutions are feasible,the representative modulation patterns are analyzed,showcasing the versatility of buffer-atom-mediated two-qubit gates.From a broader perspective,these efforts enhance the resemblance between the cold atom qubit platform and the superconducting qubit system,with the buffer atom functioning like wires and junctions.展开更多
The selective oxidation of cyclohexane to cyclohexanone and cyclohexanol(KA oil)is a challenging issue in the chemical industry.At present the industrial conversion of cyclohexane to cyclohexanone and cyclohexanol is ...The selective oxidation of cyclohexane to cyclohexanone and cyclohexanol(KA oil)is a challenging issue in the chemical industry.At present the industrial conversion of cyclohexane to cyclohexanone and cyclohexanol is normally controlled at less than 5%selectivity.Thus,the development of highly active and stable catalysts for the aerobic oxidation of cyclohexane is necessary to overcome this low-efficiency process.Therefore,we have developed a cobalt-nitrogen co-doped porous sphere catalyst,Co-NC-x(x is the Zn/Co molar ratio,where x=0,0.5,1,2,and 4)by pyrolyzing resorcinol-formaldehyde resin microspheres.It achieved 88.28%cyclohexanone and cyclohexanol selectivity and a cyclohexane conversion of 8.88%under Co-NC-2.The results showed that the introduction of zinc effectively alleviated the aggregation of Co nanoparticles and optimized the structural properties of the material.In addition,Co0 and pyridinic-N are proposed to be the possible active species,and their proportion efficiently increased in the presence of Zn^(2+)species.In this study,we developed a novel strategy to design highly active catalysts for cyclohexane oxidation.展开更多
Relatively little is known about the impact of global warming on the tropical cyclone(TC)outflow,despite its large contribution to TC intensity.In this study,based on the International Best Track Archive for Climate S...Relatively little is known about the impact of global warming on the tropical cyclone(TC)outflow,despite its large contribution to TC intensity.In this study,based on the International Best Track Archive for Climate Stewardship(IBTrACS)dataset and ERA5 reanalysis data,we show that the TC outflow height has risen significantly(48.20±22.18 m decades-1)in the past decades(1959-2021)over the western North Pacific,and the rising trend tends to be sharper for stronger TCs(the uptrend of severe typhoon is 61.09±40.92 m decades-1).This rising trend of the outflow height explains the contradiction between the decrease trend of the TC outflow temperature and the increase trend of the atmospheric troposphere temperature.Moreover,possible contribution of the TC outflow height uptrend to TC intensity has also been investigated.The results show that the rise of outflow height leads to the decrease of outflow temperature,and thus an increased difference between underlying sea surface temperature(SST)and TC outflow temperature,which eventually favors the increase of TC intensity.展开更多
基金the Natural Sciences and Engineering Research Council of Canada(Discovery Grant RGPIN-2023-05879)the New Brunswick Innovation Foundation(Emerging Projects Grant EP-0000000033)。
文摘Volume is an important attribute used in many forest management decisions.Data from 83 fixed-area plots located in central New Brunswick,Canada,are used to examine how different measures of stand-level diameter and height influence volume prediction using a stand-level variant of Honer's(1967)volume equation.When density was included in the models(Volume=f(Diameter,Height,Density))choice of diameter measure was more important than choice of height measure.When density was not included(Volume=f(Diameter,Height)),the opposite was true.For models with density included,moment-based estimators of stand diameter and height performed better than all other measures.For models without density,largest tree estimators of stand diameter and height performed better than other measures.The overall best equation used quadratic mean diameter,Lorey's height,and density(root mean square error=5.26 m^3·ha^(-1);1.9%relative error).The best equation without density used mean diameter of the largest trees needed to calculate a stand density index of 400 and the mean height of the tallest 400 trees per ha(root mean square error=32.08 m^(3)·ha^(-1);11.8%relative error).The results of this study have some important implications for height subsampling and LiDAR-derived forest inventory analyses.
基金the financial supports from the Chinese Academy of Sciences,China(No.E055A101)the Science and Technology Project of Shen-Fu Reform and innovation Demonstration Zone,China(No.2021JH15)the National Natural Science Foundation of China(No.U1710257)。
基金This project was supported by National Natural Science Foundation of China(No.31570343).
文摘A pharmacological network of"component/target/pathway"for Rhizoma coptidis against type 2 diabetes(T2D)was established by network-pharmacology,and the active components of Rhizoma coptidis and its mechanism were explored.A literature-based and database study of the components of Rhizoma coptidis was carried out and screened by ADME paramcters.The targets of Rhizoma coptidis were predicted by the ligand similarity method.Related pathways were analyzed with databases,and software was used to construct a "component/target path" network.The mechanism was further confirmed by GEO database with R software.A total of 12 active components were screened from Rhizoma coptidis,involving 57 targets including MAPKI,STAT3,INSR,and 38 signaling pathways were associated with T2D.Related signaling pathways included essential pathways for T2D such as insulin resistance,and pathways that had indirect effect on T2D.It was suggested that Rhizoma coptidis may exert its effects against T2D through multi-component,multi-target,and multi-pathway forms.
基金the National Key R&D Program of China(2018YFB1500101)National Basic Research Program of China(No.2015CB932200)CAS-Iranian Vice Presidency for Science and Technology Joint Research Project(No.116134KYSB20160130).
文摘A new benzothiadiazole-based D-A-D hole transport material(DTBT)has been designed and synthesized with a more planar structure by introducing of thiophene bridges.The results indicate a lower band gap and quite higher hole mobility for the DTBT.Furthermore,the enhancement in molecular planarity with simple thiophene unit increases the hole mobility of DTBT(8.77×10^-4cm^2 V^-1s^-1)by about 40%.And when DTBT is used as hole transport material in perovskite solar cells,the photoelectric conversion efficiency of the corresponding dopant-free devices is also significantly improved compared with that of the conventional BT model molecule without thiophene.In terms of device stability,DTBT-based devices show a favorable long-term stability,which keep 83%initial efficiency after 15 days.Therefore,the introducing of thiophene bridges in D-A-D typed HTMs can improve the molecular planarity effectively,thereby increasing the hole mobility and improving device performance.
基金Project supported by the National Natural Science Foundation(Grant No.U1404108)the Innovative Talents of Universities in Henan Province of China(Grant No.17HASTIT013)+1 种基金the Basic and Frontier Technology Research Program of Henan Province of China(Grant No.162300410056)the Key Scientific Research Projects of Higher Institutions in Henan Province of China(Grant No.19A140018).
文摘Searching for two-dimensional(2 D) stable materials with direct band gap and high carrier mobility has attracted great attention for their electronic device applications.Using the first principles calculations and particle swarm optimization(PSO) method,we predict a new 2 D stable material(HfNZ monolayer) with the global minimum of 2 D space.The HfNZ monolayer possesses direct band gap(~1.46 eV) and it is predicted to have high carrier mobilities(~103 cm2·V-1·s-1)from deformation potential theory.The direct band gap can be well maintained and flexibly modulated by applying an easily external strain under the strain conditions.In addition,the newly predicted HfN2 monolayer possesses good thermal,dynamical,and mechanical stabilities,which are verified by ab initio molecular dynamics simulations,phonon dispersion and elastic constants.These results demonstrate that HfN2 monolayer is a promising candidate in future microelectronic devices.
基金the National Natural Science Foundation of China(Nos.U1909218,81827804 and T2121004).
文摘Projection-based 3D bioprinting(PBP):a powerful method to fabricate 3D cellular structures Three-dimensional(3D)bioprinting has played an important role in tissue engineering and regenerative medicine areas over the past decade[1].Different from traditional cell cultures in Petri dishes,3D bioprinting can build bionic structures with a better potential to become artificial organ substitutes[2–4].With the development of photocurable biomaterials,the projection-based 3D printing method has been successfully applied in biological research[5,6].
基金financially supported by the National Natural Science Foundation of China(No.42272204)the National Key Research and Development Program of China(No.2018YFB0605503)the Fundamental Research Funds for the Central Universities(No.2021JCCXDC02)。
文摘To improve the accuracy of microseismic inversion,seismic anisotropy and moment tensor source should be carefully considered in the forward modelling stage.In this study,3D microseismic anisotropy wave forward modelling with a moment tensor source was proposed.The modelling was carried out based on a rotated-staggered-grid(RSG)scheme.In contrast to staggered-grids,the RSG scheme defines the velocity components and densities at the same grid,as do the stress components and elastic parameters.Therefore,the elastic moduli do not need to be interpolated.In addition,the detailed formulation and implementation of moment-tensor source loaded on the RSG was presented by equating the source to the stress increments.Meanwhile,the RSG-based 3D wave equation forward modelling was performed in parallel using compute unified device architecture(CUDA)programming on a graphics processing unit(GPU)to improve its efficiency.Numerical simulations including homogeneous and anisotropic models were carried out using the method proposed in this paper,and compared with other methods to prove the reliability of this method.Furthermore,the high efficiency of the proposed approach was evaluated.The results show that the computational efficiency of proposed method can be improved by about two orders of magnitude compared with traditional central processing unit(CPU)computing methods.It could not only help the analysis of microseismic full wavefield records,but also provide support for passive source inversion,including location and focal mechanism inversion,and velocities inversion.
基金sponsored by the National Key Research and Development Program of China (No.2018YFA0703000)the National Natural Science Foundation of China (Nos.T2121004 and U1909218)supported by the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (No.ZYYCXTD-D-202002)。
文摘Micro-/nano-patterns on hydrogels are widely used in cell patterning.However,manufacturing molds with traditional lithography is time-consuming and expensive.In addition,the excessive demolding force can easily damage patterns since biocompatible hydrogels are ultra-soft or brittle.Here,we presented a novel method for rapid and mass fabrication of cell patterns.High-precision three-dimensional(3D)printing was used to manufacture a mold with a resolution of 2µm,and the gelatin-based hydrogel was cured by thermal–photo-crosslinking so that the low-concentration and low-substitutionrate hydrogel could be demolded successfully.We found that pre-cooling before illumination made gelatin-based hydrogels resilient due to the partial regain of triple-helix structures.With this method,arbitrarily customized hydrogel patterns with a feature size of 6–80µm can be fabricated stably and at low cost.When cardiomyocytes were seeded on ultra-soft hydrogels with parallel groove structures,a consistent and spontaneous beating with 216 beats per minute(BPM)could be observed,approaching the natural beating rate of rat hearts(300 BPM).Overall,this work provides a general scheme for manufacturing cell patterns which has great potential for cell ethology and tissue repair.
基金supported by National Nature Science Foundation(No.61501529,No.61331013)National Language Committee Project of China(No.ZDI125-36)Young Teachers'Scientific Research Project in Minzu University of China.
文摘With the emergence of large-scale knowledge base,how to use triple information to generate natural questions is a key technology in question answering systems.The traditional way of generating questions require a lot of manual intervention and produce lots of noise.To solve these problems,we propose a joint model based on semi-automated model and End-to-End neural network to automatically generate questions.The semi-automated model can generate question templates and real questions combining the knowledge base and center graph.The End-to-End neural network directly sends the knowledge base and real questions to BiLSTM network.Meanwhile,the attention mechanism is utilized in the decoding layer,which makes the triples and generated questions more relevant.Finally,the experimental results on SimpleQuestions demonstrate the effectiveness of the proposed approach.
基金This work was supported in part by Program funded by Ministry of Education in Liaoning Province under Grants LR2017060in part by Zhejiang Provincial Natural Science Foundation of China(No.LY18E070005).
文摘In this paper,for design of large-scale electromagnetic problems,a novel robust global optimization algorithm based on surrogate models is presented.The proposed algorithm can automatically select a proper meta-model technique among multiple alternatives.In this paper,three representative meta-modeling techniques including ordinary Kriging,universal Kriging,and response surface method with multi-quadratic radial basis functions are applied.In each optimization iteration,the above three models are used for parallel calculation.The proposed hybrid surrogate model optimization algorithm synthesizes advantages of these different meta-models.Without verification of a specific meta-model,a suitable one for the engineering problem to be analyzed is automatically selected.Therefore,the proposed algorithm intends to make a better trade-off between numerical efficiency and searching accuracy for solving engineering problems,which are characterized by stronger non-linearity,higher complexity,non-convex feasible region,and expensive performance analysis.
基金sponsored by the National Key Research and Development Program of China(2021YFC2501800)the National Natural Science Foundation of China(No.U1909218)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.T2121004).
文摘Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking.Here,we present an innovative biomimetic controllable strain membrane(BCSM)at an air–liquid interface(ALI)to reconstruct alveolar respiration.The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone(PCL)mesh,coated with a hydrogel substrate—to simulate the important functions(such as stiffness,porosity,wettability,and ALI)of alveolar microenvironments,and seeded pulmonary epithelial cells and vascular endothelial cells on either side,respectively.Inspired by papercutting,the BCSM was fabricated in the plane while it operated in three dimensions.A series of the topological structure of the BCSM was designed to control various local-area strain,mimicking alveolar varied deformation.Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition,which might be effective in preventing ventilator-induced lung injury.The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future,such as in drug toxicology and metabolism.
基金This work is supported by the National Nature Science Foundation(No.61972436).
文摘As the dual task of question answering,question generation(QG)is a significant and challenging task that aims to generate valid and fluent questions from a given paragraph.The QG task is of great significance to question answering systems,conversational systems,and machine reading comprehension systems.Recent sequence to sequence neural models have achieved outstanding performance in English and Chinese QG tasks.However,the task of Tibetan QG is rarely mentioned.The key factor impeding its development is the lack of a public Tibetan QG dataset.Faced with this challenge,the present paper first collects 425 articles from the Tibetan Wikipedia website and constructs 7,234 question–answer pairs through crowdsourcing.Next,we propose a Tibetan QG model based on the sequence to sequence framework to generate Tibetan questions from given paragraphs.Secondly,in order to generate answer-aware questions,we introduce an attention mechanism that can capture the key semantic information related to the answer.Meanwhile,we adopt a copy mechanism to copy some words in the paragraph to avoid generating unknown or rare words in the question.Finally,experiments show that our model achieves higher performance than baseline models.We also further explore the attention and copy mechanisms,and prove their effectiveness through experiments.
基金supported by the National Key R&D Program of China(Grant No.2016YFA0301500)the National Natural Science Foundation of China(Grants No.61835013)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB01020300 and XDB21030300)。
文摘Three-dimensional type-ⅡWeyl fermions possess overtilted cone-like low-energy band dispersion.Unlike the closed ellipsoidal Fermi surface for type-ⅠWeyl fermions,the Fermi surface is an open hyperboloid for type-ⅡWeyl fermions.We evaluate the spin and density susceptibility of type-ⅡWeyl fermions with repulsive S-wave interaction by means of Green’s functions.We obtain the particle–hole continuum along the tilted momentum direction and perpendicular to the tilted momentum direction respectively.We find the zero sound mode in some repulsive interaction strengths by numerically solving the pole equations of the susceptibility within the random-phase approximation.
基金support from Fundamental Research Funds for the Central Universities(N2025034)Xingliao Project(XLYC1807042)the 111 Project(B16009).
文摘Integrating electrochemical reduction of CO_(2)and electrochemical oxidation to recycle degraded superalloys is a promising solution to ease resource scarcity and safeguard environmental sustainability.Herein,we propose an electrochemical technique for the conversion of bulk superalloy scraps and CO_(2)into oxide powder at the anode and solid carbon at the cathode,respectively.In particular,a borax-modifi ed CaCl_(2)-based molten salt electrolyte is used for enhancing the electrochemical oxidation of superalloy scraps.At a temperature of 700℃and a voltage of 2.8 V,90.55 wt.%of alloy scraps were oxidized in a molten CaCl_(2)–NaCl–CaCO_(3)–Na_(2)B_(4)O_(7)with an acid–base ratio(K_(a/b))of 1.The synergy of Cl−and B_(4)O_(7)2−of electrolyte prevents the passivation of the alloy anode and enables continuous oxidation.Furthermore,the Ni and Co in the anode products are recovered by sulfation roasting with recovery efficiencies of 85.58%and 95.27%for Ni and Co,respectively.Overall,modulating the alkalinity of the electrolyte for enhancing oxidation/pulverization of alloy scrap anode provides new insight into electrochemically recovering superalloy scraps.
基金supported by the National Natural Science Foundation of China(Grant Nos.92165107,and 12074391)the Fundamental Research Program of the Chinese Academy of Sciencesthe Science and Technology Commission of Shanghai Municipality。
文摘Connectivity of two-qubit logic gates plays a crucial and indispensable role in quantum computation research.For the cold atom qubit platform,while the two-qubit Rydberg blockade gate has recently made rapid experimental progress,a pressing challenge is to improve connectivity in pursuit of genuine scalability without sacrificing speed or fidelity.A significant advancement in this direction can be achieved by introducing an extra buffer atom to extend the two-qubit gate beyond purely nearest-neighbor two-body interactions.The buffer atom couples with the two qubit atoms through nearest-neighbor interactions,even though the qubit atoms do not directly exert any physical influence on each other.The established method of off-resonant modulated driving(ORMD)is not only convenient but also lays the groundwork for this latest development.Although the atomic linkage structure here exhibits more complex interactions compared to previous two-body systems,the population can satisfactorily return to the ground state after the ground-Rydberg transition with a properly designed modulation waveform.This can be achieved through one-photon and two-photon ground-Rydberg transitions in common practices.Furthermore,with buffer atom relay or similar structures,it is possible to realize a two-qubit entangling gate between two distant qubit atoms.In addition to demonstrating that such solutions are feasible,the representative modulation patterns are analyzed,showcasing the versatility of buffer-atom-mediated two-qubit gates.From a broader perspective,these efforts enhance the resemblance between the cold atom qubit platform and the superconducting qubit system,with the buffer atom functioning like wires and junctions.
基金supported by National Natural Science Foundation of China(Grant No.22178294)Science and Technology Innovation Program of Hunan Province(Grant No.2022RC1117)+2 种基金Project of Hunan Provincial Education Department(Grant No.22A0125)Hunan Provincial Natural Science Foundation of China(Grant No.2021JJ30663)Postgraduates Scientific Research Innovation Project of Xiangtan University(Grant No.QL20220146)。
文摘The selective oxidation of cyclohexane to cyclohexanone and cyclohexanol(KA oil)is a challenging issue in the chemical industry.At present the industrial conversion of cyclohexane to cyclohexanone and cyclohexanol is normally controlled at less than 5%selectivity.Thus,the development of highly active and stable catalysts for the aerobic oxidation of cyclohexane is necessary to overcome this low-efficiency process.Therefore,we have developed a cobalt-nitrogen co-doped porous sphere catalyst,Co-NC-x(x is the Zn/Co molar ratio,where x=0,0.5,1,2,and 4)by pyrolyzing resorcinol-formaldehyde resin microspheres.It achieved 88.28%cyclohexanone and cyclohexanol selectivity and a cyclohexane conversion of 8.88%under Co-NC-2.The results showed that the introduction of zinc effectively alleviated the aggregation of Co nanoparticles and optimized the structural properties of the material.In addition,Co0 and pyridinic-N are proposed to be the possible active species,and their proportion efficiently increased in the presence of Zn^(2+)species.In this study,we developed a novel strategy to design highly active catalysts for cyclohexane oxidation.
基金Supported by the National Natural Science Foundation of China(42075035 and 42075011)。
文摘Relatively little is known about the impact of global warming on the tropical cyclone(TC)outflow,despite its large contribution to TC intensity.In this study,based on the International Best Track Archive for Climate Stewardship(IBTrACS)dataset and ERA5 reanalysis data,we show that the TC outflow height has risen significantly(48.20±22.18 m decades-1)in the past decades(1959-2021)over the western North Pacific,and the rising trend tends to be sharper for stronger TCs(the uptrend of severe typhoon is 61.09±40.92 m decades-1).This rising trend of the outflow height explains the contradiction between the decrease trend of the TC outflow temperature and the increase trend of the atmospheric troposphere temperature.Moreover,possible contribution of the TC outflow height uptrend to TC intensity has also been investigated.The results show that the rise of outflow height leads to the decrease of outflow temperature,and thus an increased difference between underlying sea surface temperature(SST)and TC outflow temperature,which eventually favors the increase of TC intensity.