Quantum batteries are energy storage devices that satisfy quantum mechanical principles.How to improve the battery’s performance such as stored energy and power is a crucial element in the quantum battery.Here,we inv...Quantum batteries are energy storage devices that satisfy quantum mechanical principles.How to improve the battery’s performance such as stored energy and power is a crucial element in the quantum battery.Here,we investigate the charging and discharging dynamics of a three-level counterdiabatic stimulated Raman adiabatic passage quantum battery via shortcuts to adiabaticity,which can compensate for undesired transitions to realize a fast adiabatic evolution through the application of an additional control field to an initial Hamiltonian.The scheme can significantly speed up the charging and discharging processes of a three-level quantum battery and obtain more stored energy and higher power compared with the original stimulated Raman adiabatic passage.We explore the effect of both the amplitude and the delay time of driving fields on the performances of the quantum battery.Possible experimental implementation in superconducting circuit and nitrogen–vacancy center is also discussed.展开更多
基金The work was supported by the National Natural Science Foundation of China(Grant No.12075193).
文摘Quantum batteries are energy storage devices that satisfy quantum mechanical principles.How to improve the battery’s performance such as stored energy and power is a crucial element in the quantum battery.Here,we investigate the charging and discharging dynamics of a three-level counterdiabatic stimulated Raman adiabatic passage quantum battery via shortcuts to adiabaticity,which can compensate for undesired transitions to realize a fast adiabatic evolution through the application of an additional control field to an initial Hamiltonian.The scheme can significantly speed up the charging and discharging processes of a three-level quantum battery and obtain more stored energy and higher power compared with the original stimulated Raman adiabatic passage.We explore the effect of both the amplitude and the delay time of driving fields on the performances of the quantum battery.Possible experimental implementation in superconducting circuit and nitrogen–vacancy center is also discussed.