The strong polarization effect of GaN-based materials is widely used in high-performance devices such as white-lightemitting diodes(white LEDs),high electron mobility transistors(HEMTs),and GaN polarization superjunct...The strong polarization effect of GaN-based materials is widely used in high-performance devices such as white-lightemitting diodes(white LEDs),high electron mobility transistors(HEMTs),and GaN polarization superjunctions.However,the current researches on the polarization mechanism of GaN-based materials are not sufficient.In this paper,we studied the influence of polarization on electric field and energy band characteristics of Ga-face GaN bulk materials by using a combination of theoretical analysis and semiconductor technology computer-aided design(TCAD) simulation.The selfscreening effect in Ga-face bulk GaN under ideal and non-ideal conditions is studied respectively.We believe that the formation of high-density two-dimensional electron gas(2 DEG) in GaN is the accumulation of screening charges.We also clarify the source and accumulation of the screening charges caused by the GaN self-screening effect in this paper and aim to guide the design and optimization of high-performance GaN-based devices.展开更多
Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is i...Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is investigated mainly by temperature-dependent photoluminescence measurements. It is found that the localization effect is enhanced as the well width increases from 1.8 nm to 3.6 nm in our experiments. The temperature induced PL peak blueshift and linewidth variation increase with increasing well width, implying that a greater amplitude of potential fluctuation as well as more localization states exist in wider wells. In addition, it is noted that the broadening of the PL spectra always occurs mainly on the low-energy side of the PL spectra due to the temperature-induced band-gap shrinkage, while in the case of the widest well, a large extension of the spectral curve also occurs in the high energy sides due to the existence of more shallow localized centers.展开更多
基金Project supported by the Key Research and Development Program of Guangdong Province,China(Grant No.2020B010174003)。
文摘The strong polarization effect of GaN-based materials is widely used in high-performance devices such as white-lightemitting diodes(white LEDs),high electron mobility transistors(HEMTs),and GaN polarization superjunctions.However,the current researches on the polarization mechanism of GaN-based materials are not sufficient.In this paper,we studied the influence of polarization on electric field and energy band characteristics of Ga-face GaN bulk materials by using a combination of theoretical analysis and semiconductor technology computer-aided design(TCAD) simulation.The selfscreening effect in Ga-face bulk GaN under ideal and non-ideal conditions is studied respectively.We believe that the formation of high-density two-dimensional electron gas(2 DEG) in GaN is the accumulation of screening charges.We also clarify the source and accumulation of the screening charges caused by the GaN self-screening effect in this paper and aim to guide the design and optimization of high-performance GaN-based devices.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0401801)the National Natural Science Foundation of China(Grant Nos.61674138,61674139,61604145,61574135,61574134,61474142,61474110,61377020,and 61376089)+1 种基金Science Challenge Project,China(Grant No.JCKY2016212A503)One Hundred Person Project of the Chinese Academy of Sciences
文摘Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is investigated mainly by temperature-dependent photoluminescence measurements. It is found that the localization effect is enhanced as the well width increases from 1.8 nm to 3.6 nm in our experiments. The temperature induced PL peak blueshift and linewidth variation increase with increasing well width, implying that a greater amplitude of potential fluctuation as well as more localization states exist in wider wells. In addition, it is noted that the broadening of the PL spectra always occurs mainly on the low-energy side of the PL spectra due to the temperature-induced band-gap shrinkage, while in the case of the widest well, a large extension of the spectral curve also occurs in the high energy sides due to the existence of more shallow localized centers.