The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small e...The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small ellipticity.However,one of the most significant challenges lies in ultra-long-distance data transmission,particularly for the Magnetic and Helioseismic Imager(MHI),which is the most important payload and generates the largest volume of data in SPO.In this paper,we propose a tailored lossless data compression method based on the measurement mode and characteristics of MHI data.The background out of the solar disk is removed to decrease the pixel number of an image under compression.Multiple predictive coding methods are combined to eliminate the redundancy utilizing the correlation(space,spectrum,and polarization)in data set,improving the compression ratio.Experimental results demonstrate that our method achieves an average compression ratio of 3.67.The compression time is also less than the general observation period.The method exhibits strong feasibility and can be easily adapted to MHI.展开更多
The Advanced Space-based Solar Observatory(ASO-S)is a mission proposed for the 25 th solar maximum by the Chinese solar community.The scientific objectives are to study the relationships between the solar magnetic fie...The Advanced Space-based Solar Observatory(ASO-S)is a mission proposed for the 25 th solar maximum by the Chinese solar community.The scientific objectives are to study the relationships between the solar magnetic field,solar flares and coronal mass ejections(CMEs).Three payloads are deployed:the Full-disk vector Magneto Graph(FMG),the Lyman-αSolar Telescope(LST)and the Hard X-ray Imager(HXI).ASO-S will perform the first simultaneous observations of the photospheric vector magnetic field,non-thermal imaging of solar flares,and the initiation and early propagation of CMEs on a single platform.ASO-S is scheduled to be launched into a 720 km Sun-synchronous orbit in 2022.This paper presents an overview of the mission till the end of Phase-B and the beginning of Phase-C.展开更多
The Full-disk Magneto Graph(FMG),a payload onboard the Advanced Space Solar Observatory(ASO-S),will measure the vector magnetic field in the photosphere.The instrument consists of a frontwindow filter,a telescope,an L...The Full-disk Magneto Graph(FMG),a payload onboard the Advanced Space Solar Observatory(ASO-S),will measure the vector magnetic field in the photosphere.The instrument consists of a frontwindow filter,a telescope,an LCVR polarimeter,an image-stabilization system,a seven-stage tunable Lyot filter,a CMOS camera with 4096×4096 pixels and a pair of calibration/focus wheels.In this paper,we describe the design of the FMG instrument and provide a summary of test observations carried out with the FMG prototype.展开更多
The Full-disk vector Magneto Graph(FMG)instrument will carry out polarization observations at one wavelength position of the Fe I 5324.179?spectral line.This paper describes how to choose this single wavelength positi...The Full-disk vector Magneto Graph(FMG)instrument will carry out polarization observations at one wavelength position of the Fe I 5324.179?spectral line.This paper describes how to choose this single wavelength position,the relevant data-processing and the magnetic field calibrations based on the measured polarization signals at one single wavelength position.It is found that solar radial Doppler velocity,which can cause the spectral line to shift,is a disadvantageous factor for the linear calibration at one wavelength position.Observations at two symmetric wavelength positions may significantly reduce the wavelength shift effect(~75%),but simulations show that such polarization signals located at the solar limbs(e.g.,beyond the longitude range of±30°)are not free from the effect completely.In future work,we plan to apply machine learning techniques to calibrate vector magnetic fields,or employ full Stokes parameter profile inversion techniques to obtain accurate vector magnetic fields,in order to complement the linear calibration at the single wavelength position.展开更多
A ground data analysis center is very important to the success of a mission.We introduce the Science Operations and Data Center(SODC)for the ASO-S mission,which consists of a scientific operation subcenter,a data mana...A ground data analysis center is very important to the success of a mission.We introduce the Science Operations and Data Center(SODC)for the ASO-S mission,which consists of a scientific operation subcenter,a data management subcenter,a data analysis subcenter and a user service subcenter.The mission planning process,instrument observation modes and the data volume are presented.We describe the data flow and processing procedures from spacecraft telemetry to high-level science data,and the long-term archival as well.The data policy and distributions are also briefly introduced.展开更多
This paper is devoted to the primary spectro-polarimetric observation performed at the New Vacuum Solar Telescope(NVST)of China since 2017,and our aim is to precisely evaluate the real polarimetric accuracy and sensit...This paper is devoted to the primary spectro-polarimetric observation performed at the New Vacuum Solar Telescope(NVST)of China since 2017,and our aim is to precisely evaluate the real polarimetric accuracy and sensitivity of this polarimetry by using full Stokes spectro-polarimetric observations of the photospheric line Fe I 532.4 nm.In the work,we briefly describe the salient characteristic of the NVST as a polarimeter in terms of technology and then characterize its instrumental polarization based on the operation in 2017 and 2019.It is verified that the calibration method utilizing the instrumental polarization calibration unit(ICU)is stable and credible.The calibration accuracy can reach up to 3×10^-3.Based on the scientific observation of NOAA Active Region 12645 on 2017 April 5,we estimate that the residual cross-talk from Stokes I to Stokes Q,U and V,after the instrumental polarization calibration,is about 4×10^-3 on average,which is consistent with the calibration accuracy and close to the photon noise.The polarimetric sensitivity(i.e.,the detection limit)for polarized light is of the order of 10-3 with an integration time over 20 s.Slow modulation rate is indeed an issue for the present system.The present NVST polarimeter is expected to be integrated with a high-order adaptive optics system and a field scanner to realize 2 D vector magnetic field measurements in the following instrumentation update.展开更多
The Stokes polarimeter based on liquid crystal variable retarders(LCVRs)is envisaged as a promising novel technique for polarization measurement in space applications due to the inherent advantage of eliminating the n...The Stokes polarimeter based on liquid crystal variable retarders(LCVRs)is envisaged as a promising novel technique for polarization measurement in space applications due to the inherent advantage of eliminating the need for conventional rotating polarizing optics and increasing the measuring speed.However,the intrinsic multi-beam interference in LCVRs limits its polarization accuracy by several percent.How to eliminate the influence of the interference effect becomes an urgent issue for the liquid-crystal-based Stokes polarimeter.The present study introduces a simplified but effective interference model based on the thin-film optics and polarized light theory to simulate the relationship between the interference effect of the LCVRs-based Stokes polarimeter and the polarization accuracy.The simulation results show that the transmittance variation of LCVR with the derived voltage is caused by multi beam interference between the indium tin oxide(ITO)film and the liquid crystal within LCVR,which produces a few percent of instrumental polarization.The instrumental polarization is about 0.01 and different for different wavelengths.An optimization method was proposed to reduce the instrumental polarization to 0.002,effectively improving the polarization sensitivity of the Stokes polarimeter limited by the interference.In addition,an experimental setup was built up to measure and analyze the influence of the interference effect of the LCVRs-based Stokes polarimeter on the polarization accuracy before and after the optimization.The experiment results are in good agreement with the simulation.展开更多
The Advanced Space-based Solar Observatory(ASO-S)is a mission proposed by the Chinese Solar Physics Community.As one of the three payloads of ASO-S,the Full-disc Magneto-Graph(FMG)will measure the photospheric magneti...The Advanced Space-based Solar Observatory(ASO-S)is a mission proposed by the Chinese Solar Physics Community.As one of the three payloads of ASO-S,the Full-disc Magneto-Graph(FMG)will measure the photospheric magnetic fields of the entire solar disk with high spatial and temporal resolution,and high magnetic sensitivity,where liquid crystal variable retarder(LCVR)is the key to whether FMG can achieve its scientific goal.So far,there is no space flight experience for LCVR.Therefore,irradiation study for LCVRs becomes more important and urgent in order to make sure their safety and reliability in space application.In this paper,γirradiation,proton irradiation,and ultra-violet(UV)irradiation are tested for LCVRs respectively.The optical and chemical properties during irradiation tests are measured and analyzed.For optical properties,there is no significant change in those parameters FMG payload concerned except the retardation.Although there is no drastic degradation in the retardation versus voltage during irradiations,the amount of retardation variation is much higher than the instrument requirements.Thus,an in-flight retardation versus voltage should be added in FMG payload,reducing or even avoiding the impact of retardation change.For chemical properties,the clearing point and birefringence of the LC materials almost have no change;the ion density dose not change below 60 krad[Si],but begin to increase dramatically above 60 krad[Si].展开更多
The Fourier transform spectrometer(FTS)is a core instrument for solar observation with high spectral resolution,especially in the infrared.The Infrared System for the Accurate Measurement of Solar Magnetic Field(AIMS)...The Fourier transform spectrometer(FTS)is a core instrument for solar observation with high spectral resolution,especially in the infrared.The Infrared System for the Accurate Measurement of Solar Magnetic Field(AIMS),working at 10-13μm,will use an FTS to observe the solar spectrum.The Bruker IFS-125 HR,which meets the spectral resolution requirement of AIMS but simply equips with a point source detector,is employed to carry out preliminary experiment for AIMS.A sun-light feeding experimental system is further developed.Several experiments are taken with them during 2018 and 2019 to observe the solar spectrum in the visible and near infrared wavelength,respectively.We also proposed an inversion method to retrieve the solar spectrum from the observed interferogram and compared it with the standard solar spectrum atlas.Although there is a wavelength limitation due to the present sun-light feeding system,the results in the wavelength band from 0.45-1.0μm and 1.0-2.2μm show a good consistency with the solar spectrum atlas,indicating the validity of our observing configuration,the data analysis method and the potential to work in longer wavelength.The work provided valuable experience for the AIMS not only for the operation of an FTS but also for the development of its scientific data processing software.展开更多
A new solar telescope system is described, which has been operating at Huairou Solar Observing Station (HSOS), National Astronomical Observatories, Chinese Academy of Sciences (CAS), since the end of 2005. This in...A new solar telescope system is described, which has been operating at Huairou Solar Observing Station (HSOS), National Astronomical Observatories, Chinese Academy of Sciences (CAS), since the end of 2005. This instrument, the Solar Magnetism and Activity Telescope (SMAT), comprises two telescopes which respectively make measurements of full solar disk vector magnetic field and Ha observation. The core of the full solar disk video vector magnetograph is a birefringent filter with 0.1A bandpass, installed in the tele-centric optical system of the telescope. We present some preliminary observational results of the full solar disk vector magnetograms and Ha filtergrams obtained with this telescope system.展开更多
We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament...We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament are seen to precede the simultaneous filament eruption and flare in the source active region, NOAA AR 9077, and the full halo-CME in the high corona. Evidence of reconfiguration of large-scale magnetic structures related to the event is illustrated by SOHO EIT and Yohkoh SXT observations, as well as, the reconstructed 3D magnetic lines of force based on the force-free assumption. We suggest that the AR filament in AR 9077 was connected to the transequatorial filament. The large-scale magnetic composition related to the transequatorial filament and its sheared magnetic arcade appears to be an essential part of the CME parent magnetic structure. Estimations show that the filament- arcade system has enough magnetic helicity to account for the helicity carried by the related CMEs. In addition, rather global magnetic connectivity, covering almost all the visible range in longitude and a huge span in latitude on the Sun, is implied by the Nan^ay Radioheliograph (NRH) observations. The analysis of the Bastille Day event suggests that although the triggering of a global CME might take place in an AR, a much larger scale magnetic composition seems to be the source of the ejected magnetic flux, helicity and plasma. The Bastille Day event is the first described ex- ample in the literature, in which a transequatorial filament activity appears to play a key role in a global CME. Many tens of halo-CME are found to be associated with transequatorial filaments and their magnetic environment.展开更多
The magnetic field is one of the most important parameters in solar physics,and a polarimeter is the key device to measure the solar magnetic field.Liquid crystals based Stokes polarimeter is a novel technology,and wi...The magnetic field is one of the most important parameters in solar physics,and a polarimeter is the key device to measure the solar magnetic field.Liquid crystals based Stokes polarimeter is a novel technology,and will be applied for magnetic field measurement in the first space-based solar observatory satellite developed by China,Advanced Space-based Solar Observatory.However,the liquid crystals based Stokes polarimeter in space is not a mature technology.Therefore,it is of great scientific significance to study the control method and characteristics of the device.The retardation produced by a liquid crystal variable retarder is sensitive to the temperature,and the retardation changes 0.09°per 0.10℃.The error in polarization measurement caused by this change is 0.016,which affects the accuracy of magnetic field measurement.In order to ensure the stability of its performance,this paper proposes a high-precision temperature control system for liquid crystals based Stokes polarimeter in space.In order to optimize the structure design and temperature control system,the temperature field of liquid crystals based Stokes polarimeter is analyzed by the finite element method,and the influence of light on the temperature field of the liquid crystal variable retarder is analyzed theoretically.By analyzing the principle of highprecision temperature measurement in space,a high-precision temperature measurement circuit based on integrated operational amplifier,programmable amplifier and 12 bit A/D is designed,and a high-precision space temperature control system is developed by applying the integral separation PI temperature control algorithm and PWM driving heating films.The experimental results show that the effect of temperature control is accurate and stable,whenever the liquid crystals based Stokes polarimeter is either in the air or vacuum.The temperature stability is within±0.0150℃,which demonstrates greatly improved stability for the liquid crystals based Stokes polarimeter.展开更多
Some experimental tests and improvements to the Very Fast Inversion of the Stokes Vector program, which is designed for the inversion calculation used by the Helioseismic and Magnetic Imager instrument on the Solar Dy...Some experimental tests and improvements to the Very Fast Inversion of the Stokes Vector program, which is designed for the inversion calculation used by the Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory, are given. On one hand, the interpolation for calculating the Voigt function is not smooth, which may occasionally cause the iteration process to converge to different minima although they are very close to initial values. This problem can be solved by a smoother interpolation. On the other hand, in order to improve the performance of this program, we have tried to abandon the randomly-jump-out strategy and set the initial value properly to avoid non-global minima. The resulting method costs only 1//4 of the computational time, and will be very competitive when the users are only interested in the vectorial magnetic fields and the velocities along the line of sight.展开更多
We study the magnetic structure of five well-known active regions that produced great flares (X5 or larger). The six flares under investigation are the X12 flare on 1991 June 9 in AR 6659, the X5.7 flare on 2000 Jul...We study the magnetic structure of five well-known active regions that produced great flares (X5 or larger). The six flares under investigation are the X12 flare on 1991 June 9 in AR 6659, the X5.7 flare on 2000 July 14 in AR 9077, the X5.6 flare on 2001 April 6 in AR 9415, the X5.3 flare on 2001 August 25 in AR 9591, the X17 flare on 2003 October 28 and the X10 flare on 2003 October 29, both in AR 10486. The last five events had corresponding LASCO observations and were all associated with Halo CMEs. We analyzed vector magnetograms from Big Bear Solar Observatory, Huairou Solar Observing Station, Marshall Space Flight Center and Mees Solar Observatory. In particular, we studied the magnetic gradient derived from line-of-sight magnetograms and magnetic shear derived from vector magnetograms, and found an apparent correlation between these two parameters at a level of about 90%. We found that the magnetic gradient could be a better proxy than the shear for predicting where a major flare might occur: all six flares occurred in neutral lines with maximum gradient. The mean gradient of the flaring neutral lines ranges from 0.14 to 0.50 G km^-1, 2.3 to 8 times the average value for all the neutral lines in the active regions. If we use magnetic shear as the proxy, the flaring neutral line in at least one, possibly two, of the six events would be mis-identified.展开更多
A Fourier transform spectrometer(FTS)has been used to observe solar activities due to its ultra-high spectral resolution.However,the FTS in-band spectra are usually distorted and some artifacts appear in out-of-band r...A Fourier transform spectrometer(FTS)has been used to observe solar activities due to its ultra-high spectral resolution.However,the FTS in-band spectra are usually distorted and some artifacts appear in out-of-band regions due to nonlinear effects.Therefore,the FTS nonlinear problem must be corrected.In this study,we proposed a novel method to correct the nonlinear effects using simulated annealing.We simulated several nonlinear spectra to evaluate the performance of our method.The calculated quadratic coefficients are extremely close to the given values,demonstrating that the method is effective and accurate.The proposed method is further used to correct the blackbody and solar spectra with nonlinearity obtained by Bruker IFS-125HR installed at the Huairou Solar Observing Station,which is a pathfinder for the accurate infrared magnetic field measurements of the Sun project.To the blackbody spectra,the nonlinearity in low-and high-frequency regions are corrected by 89.09%and 60.84%.The nonlinear correction of the solar spectra in the low-and high-frequency regions have reached 65.34%and 81.04%,respectively.These results prove that our method can correct the nonlinear problem to improve the data accuracy.展开更多
This paper reports site survey results for the Infrared System for the Accurate Measurement of Solar Magnetic Field, especially in Saishiteng Mountain, Qinghai, China. Since 2017, we have installed a weather station,s...This paper reports site survey results for the Infrared System for the Accurate Measurement of Solar Magnetic Field, especially in Saishiteng Mountain, Qinghai, China. Since 2017, we have installed a weather station,spectrometers for precipitable water vapor, and Solar Differential Image Motion Monitor, and have carried out observations on weather elements, precipitable water vapor, and daytime seeing conditions for more than one year in almost all candidates. At Mt. Saishiteng, the median value of daytime precipitable water vapor is 5.25 mm and its median value in winter season is 2.1 mm. The median value of the Fried parameter of daytime seeing observation at Saishiteng Mountain is 3.42 cm. Its solar direct radiation data show that solar average observable time is 446 minutes per day and premium time is 401 minutes per day in 2019 August.展开更多
Hundreds of images with the same polarization state are first registered to compensate for the jitters during an observation and then integrated to realize the needed spatial resolution and sensitivity for solar magne...Hundreds of images with the same polarization state are first registered to compensate for the jitters during an observation and then integrated to realize the needed spatial resolution and sensitivity for solar magnetic field measurement. Due to the feature dependent properties of the correlation tracker technique, an effective method to select the feature region is critical for low-resolution full-disk solar filtergrams, especially those with less significant features when the Sun is quiet. In this paper, we propose a region extraction method based on a Hessian matrix and information entropy constraints for local correlation tracking(CT) to get linear displacement between different images. The method is composed of three steps:(1) extract feature points with the Hessian matrix,(2)select good feature points with scale spaces and thresholds, and(3) locate the feature region with the twodimensional information entropy constraints. Both the simulated and observational experiments demonstrated that our region selection method can efficiently detect the linear displacement and improve the quality of a groundbased full-disk solar magnetogram. The local CT with the selected regions can obtain displacement detection results as good as the global CT and at the same time significantly reduce the average calculation time.展开更多
A longitudinal magnetic field often suffers the saturation effect in a strong magnetic field region when the measurement is performed at a single-wavelength point and linear calibration is adopted.In this study,we dev...A longitudinal magnetic field often suffers the saturation effect in a strong magnetic field region when the measurement is performed at a single-wavelength point and linear calibration is adopted.In this study,we develop a method that can judge the threshold of saturation in Stokes V/I observed by the Solar Magnetic Field Telescope(SMFT)and correct it automatically.The procedure is to first perform the second-order polynomial fit to the Stokes V/I vs.I/I_(m)(I_(m) is the maximum value of Stokes I)curve to estimate the threshold of saturation,then reconstruct Stokes V/I in a strong field region to correct for saturation.The algorithm is demonstrated to be effective by comparing with the magnetograms obtained by the Helioseismic and Magnetic Imager(HMI).The accuracy rate of detection and correction for saturation is~99.4%and~88%respectively among 175 active regions.The advantages and disadvantages of the algorithm are discussed.展开更多
Stokes inversion calculation is a key process in resolving polarization information on radiation from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermo- dynamic equi...Stokes inversion calculation is a key process in resolving polarization information on radiation from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermo- dynamic equilibrium (LTE) and where the Milne-Eddington approximation is valid, the inversion problem may not be easy to solve. The initial values for the iterations are important in handling the case with mul- tiple minima. In this paper, we develop a fast inversion technique without iterations. The time taken for computation is only 1/100 the time that the iterative algorithm takes. In addition, it can provide available initial values even in cases with lower spectral resolutions. This strategy is useful for a filter-type Stokes spectrograph, such as SDO/HMI and the developed two-dimensional real-time spectrograph (2DS).展开更多
Up to now, exact measurements of chromospheric magnetic fields have not been as successful as those done in the photosphere. We are currently engaging in diagnostics of chromospheric magnetic fields with the Mg b2 lin...Up to now, exact measurements of chromospheric magnetic fields have not been as successful as those done in the photosphere. We are currently engaging in diagnostics of chromospheric magnetic fields with the Mg b2 line by employing the Multi-Channel Solar Telescope at Huairou Solar Observing Station. Therefore, how to improve accuracy in the measurement is the main issue of our present study. To this end, we first study linear calibration coefficients for longitudinal and transverse components of chromospheric fields, which vary with wavelength, in the case of a weak field assumption. Then the polarization crosstalk introduced by instruments is analyzed in detail with two numerical simulation methods. Comparisons of the po- larization signals between cases with and without correction are presented. The result indicates that polarization accuracy is greatly improved after crosstalk correction.展开更多
基金supported by the National Key R&D Program of China(grant No.2022YFF0503800)by the National Natural Science Foundation of China(NSFC)(grant No.11427901)+1 种基金by the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS-SPP)(grant No.XDA15320102)by the Youth Innovation Promotion Association(CAS No.2022057)。
文摘The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small ellipticity.However,one of the most significant challenges lies in ultra-long-distance data transmission,particularly for the Magnetic and Helioseismic Imager(MHI),which is the most important payload and generates the largest volume of data in SPO.In this paper,we propose a tailored lossless data compression method based on the measurement mode and characteristics of MHI data.The background out of the solar disk is removed to decrease the pixel number of an image under compression.Multiple predictive coding methods are combined to eliminate the redundancy utilizing the correlation(space,spectrum,and polarization)in data set,improving the compression ratio.Experimental results demonstrate that our method achieves an average compression ratio of 3.67.The compression time is also less than the general observation period.The method exhibits strong feasibility and can be easily adapted to MHI.
基金supported by the Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (Grant Nos. XDA15320100, XDA15320102, XDA15320103, XDA15320104, XDA15320300 and XDA15052200)supported by the National Natural Science Foundation of China (Grant Nos. 11427803, U1731241, U1631242 and 11820101002)
文摘The Advanced Space-based Solar Observatory(ASO-S)is a mission proposed for the 25 th solar maximum by the Chinese solar community.The scientific objectives are to study the relationships between the solar magnetic field,solar flares and coronal mass ejections(CMEs).Three payloads are deployed:the Full-disk vector Magneto Graph(FMG),the Lyman-αSolar Telescope(LST)and the Hard X-ray Imager(HXI).ASO-S will perform the first simultaneous observations of the photospheric vector magnetic field,non-thermal imaging of solar flares,and the initiation and early propagation of CMEs on a single platform.ASO-S is scheduled to be launched into a 720 km Sun-synchronous orbit in 2022.This paper presents an overview of the mission till the end of Phase-B and the beginning of Phase-C.
基金China Aerospace Science and Technology Corporation, the NO.771 InstituteChina Academy of Engineering Physics+4 种基金Changchun Institute of Optics, Fine Mechanics and Physics, CASNational Space Science Center, CASShanghai Engineering Center for Microsatellites, CASPurple Mountain Observatory, CASsupported by Grants:XDA15320102, 11427901 and XDA15052200
文摘The Full-disk Magneto Graph(FMG),a payload onboard the Advanced Space Solar Observatory(ASO-S),will measure the vector magnetic field in the photosphere.The instrument consists of a frontwindow filter,a telescope,an LCVR polarimeter,an image-stabilization system,a seven-stage tunable Lyot filter,a CMOS camera with 4096×4096 pixels and a pair of calibration/focus wheels.In this paper,we describe the design of the FMG instrument and provide a summary of test observations carried out with the FMG prototype.
基金supported by the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences (Grant Nos. XDA15320302, XDA15052200 and XDA15320102)the National Natural Science Foundation of China (Grant Nos. 11773038, 11703042, U1731241, 11427901, 11427803, 11473039 and U1831107)the 13th Fiveyear Informatization Plan of the Chinese Academy of Sciences (Grant No. XXH13505-04)
文摘The Full-disk vector Magneto Graph(FMG)instrument will carry out polarization observations at one wavelength position of the Fe I 5324.179?spectral line.This paper describes how to choose this single wavelength position,the relevant data-processing and the magnetic field calibrations based on the measured polarization signals at one single wavelength position.It is found that solar radial Doppler velocity,which can cause the spectral line to shift,is a disadvantageous factor for the linear calibration at one wavelength position.Observations at two symmetric wavelength positions may significantly reduce the wavelength shift effect(~75%),but simulations show that such polarization signals located at the solar limbs(e.g.,beyond the longitude range of±30°)are not free from the effect completely.In future work,we plan to apply machine learning techniques to calibrate vector magnetic fields,or employ full Stokes parameter profile inversion techniques to obtain accurate vector magnetic fields,in order to complement the linear calibration at the single wavelength position.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11203083, 11427803 and U1731241)supported by the Strategic Pioneer Program on Space Science, Chinese Academy of Sciences (Grant Nos. XDA15052200 and XDA15320300)
文摘A ground data analysis center is very important to the success of a mission.We introduce the Science Operations and Data Center(SODC)for the ASO-S mission,which consists of a scientific operation subcenter,a data management subcenter,a data analysis subcenter and a user service subcenter.The mission planning process,instrument observation modes and the data volume are presented.We describe the data flow and processing procedures from spacecraft telemetry to high-level science data,and the long-term archival as well.The data policy and distributions are also briefly introduced.
基金supported by the National Natural Science Foundation of China(Grant Nos.11873091,11773040,11773072 and 11373044)。
文摘This paper is devoted to the primary spectro-polarimetric observation performed at the New Vacuum Solar Telescope(NVST)of China since 2017,and our aim is to precisely evaluate the real polarimetric accuracy and sensitivity of this polarimetry by using full Stokes spectro-polarimetric observations of the photospheric line Fe I 532.4 nm.In the work,we briefly describe the salient characteristic of the NVST as a polarimeter in terms of technology and then characterize its instrumental polarization based on the operation in 2017 and 2019.It is verified that the calibration method utilizing the instrumental polarization calibration unit(ICU)is stable and credible.The calibration accuracy can reach up to 3×10^-3.Based on the scientific observation of NOAA Active Region 12645 on 2017 April 5,we estimate that the residual cross-talk from Stokes I to Stokes Q,U and V,after the instrumental polarization calibration,is about 4×10^-3 on average,which is consistent with the calibration accuracy and close to the photon noise.The polarimetric sensitivity(i.e.,the detection limit)for polarized light is of the order of 10-3 with an integration time over 20 s.Slow modulation rate is indeed an issue for the present system.The present NVST polarimeter is expected to be integrated with a high-order adaptive optics system and a field scanner to realize 2 D vector magnetic field measurements in the following instrumentation update.
基金Project supported by the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15010800 and XDA15320102)the National Natural Science Foundation of China(Grant Nos.11427901,11773040,11403047,and 11427803)。
文摘The Stokes polarimeter based on liquid crystal variable retarders(LCVRs)is envisaged as a promising novel technique for polarization measurement in space applications due to the inherent advantage of eliminating the need for conventional rotating polarizing optics and increasing the measuring speed.However,the intrinsic multi-beam interference in LCVRs limits its polarization accuracy by several percent.How to eliminate the influence of the interference effect becomes an urgent issue for the liquid-crystal-based Stokes polarimeter.The present study introduces a simplified but effective interference model based on the thin-film optics and polarized light theory to simulate the relationship between the interference effect of the LCVRs-based Stokes polarimeter and the polarization accuracy.The simulation results show that the transmittance variation of LCVR with the derived voltage is caused by multi beam interference between the indium tin oxide(ITO)film and the liquid crystal within LCVR,which produces a few percent of instrumental polarization.The instrumental polarization is about 0.01 and different for different wavelengths.An optimization method was proposed to reduce the instrumental polarization to 0.002,effectively improving the polarization sensitivity of the Stokes polarimeter limited by the interference.In addition,an experimental setup was built up to measure and analyze the influence of the interference effect of the LCVRs-based Stokes polarimeter on the polarization accuracy before and after the optimization.The experiment results are in good agreement with the simulation.
基金Project supported by the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15010800 and XDA15320102)the National Natural Science Foundation of China(Grant Nos.11427901,11773040,11403047,and 11427803).
文摘The Advanced Space-based Solar Observatory(ASO-S)is a mission proposed by the Chinese Solar Physics Community.As one of the three payloads of ASO-S,the Full-disc Magneto-Graph(FMG)will measure the photospheric magnetic fields of the entire solar disk with high spatial and temporal resolution,and high magnetic sensitivity,where liquid crystal variable retarder(LCVR)is the key to whether FMG can achieve its scientific goal.So far,there is no space flight experience for LCVR.Therefore,irradiation study for LCVRs becomes more important and urgent in order to make sure their safety and reliability in space application.In this paper,γirradiation,proton irradiation,and ultra-violet(UV)irradiation are tested for LCVRs respectively.The optical and chemical properties during irradiation tests are measured and analyzed.For optical properties,there is no significant change in those parameters FMG payload concerned except the retardation.Although there is no drastic degradation in the retardation versus voltage during irradiations,the amount of retardation variation is much higher than the instrument requirements.Thus,an in-flight retardation versus voltage should be added in FMG payload,reducing or even avoiding the impact of retardation change.For chemical properties,the clearing point and birefringence of the LC materials almost have no change;the ion density dose not change below 60 krad[Si],but begin to increase dramatically above 60 krad[Si].
基金supported by the National Natural Science Foundation of China(Grant Nos.11873062,11427901,11673038,11803002,11973056,11973061,12003051 and 12073040)supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA15320102 and XDA15052200)。
文摘The Fourier transform spectrometer(FTS)is a core instrument for solar observation with high spectral resolution,especially in the infrared.The Infrared System for the Accurate Measurement of Solar Magnetic Field(AIMS),working at 10-13μm,will use an FTS to observe the solar spectrum.The Bruker IFS-125 HR,which meets the spectral resolution requirement of AIMS but simply equips with a point source detector,is employed to carry out preliminary experiment for AIMS.A sun-light feeding experimental system is further developed.Several experiments are taken with them during 2018 and 2019 to observe the solar spectrum in the visible and near infrared wavelength,respectively.We also proposed an inversion method to retrieve the solar spectrum from the observed interferogram and compared it with the standard solar spectrum atlas.Although there is a wavelength limitation due to the present sun-light feeding system,the results in the wavelength band from 0.45-1.0μm and 1.0-2.2μm show a good consistency with the solar spectrum atlas,indicating the validity of our observing configuration,the data analysis method and the potential to work in longer wavelength.The work provided valuable experience for the AIMS not only for the operation of an FTS but also for the development of its scientific data processing software.
基金Supported by the National Natural Science Foundation of China.
文摘A new solar telescope system is described, which has been operating at Huairou Solar Observing Station (HSOS), National Astronomical Observatories, Chinese Academy of Sciences (CAS), since the end of 2005. This instrument, the Solar Magnetism and Activity Telescope (SMAT), comprises two telescopes which respectively make measurements of full solar disk vector magnetic field and Ha observation. The core of the full solar disk video vector magnetograph is a birefringent filter with 0.1A bandpass, installed in the tele-centric optical system of the telescope. We present some preliminary observational results of the full solar disk vector magnetograms and Ha filtergrams obtained with this telescope system.
基金Supported by the National Natural Science Foundation of China.
文摘We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament are seen to precede the simultaneous filament eruption and flare in the source active region, NOAA AR 9077, and the full halo-CME in the high corona. Evidence of reconfiguration of large-scale magnetic structures related to the event is illustrated by SOHO EIT and Yohkoh SXT observations, as well as, the reconstructed 3D magnetic lines of force based on the force-free assumption. We suggest that the AR filament in AR 9077 was connected to the transequatorial filament. The large-scale magnetic composition related to the transequatorial filament and its sheared magnetic arcade appears to be an essential part of the CME parent magnetic structure. Estimations show that the filament- arcade system has enough magnetic helicity to account for the helicity carried by the related CMEs. In addition, rather global magnetic connectivity, covering almost all the visible range in longitude and a huge span in latitude on the Sun, is implied by the Nan^ay Radioheliograph (NRH) observations. The analysis of the Bastille Day event suggests that although the triggering of a global CME might take place in an AR, a much larger scale magnetic composition seems to be the source of the ejected magnetic flux, helicity and plasma. The Bastille Day event is the first described ex- ample in the literature, in which a transequatorial filament activity appears to play a key role in a global CME. Many tens of halo-CME are found to be associated with transequatorial filaments and their magnetic environment.
基金the National Natural Science Foundation of China(Grant Nos.11427803,11427901 and 11773040)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(CAS)(XDA04061002 and XDA15010800)the Public Technology Service Center,National Astronomical Observatories of CAS(829011V01)。
文摘The magnetic field is one of the most important parameters in solar physics,and a polarimeter is the key device to measure the solar magnetic field.Liquid crystals based Stokes polarimeter is a novel technology,and will be applied for magnetic field measurement in the first space-based solar observatory satellite developed by China,Advanced Space-based Solar Observatory.However,the liquid crystals based Stokes polarimeter in space is not a mature technology.Therefore,it is of great scientific significance to study the control method and characteristics of the device.The retardation produced by a liquid crystal variable retarder is sensitive to the temperature,and the retardation changes 0.09°per 0.10℃.The error in polarization measurement caused by this change is 0.016,which affects the accuracy of magnetic field measurement.In order to ensure the stability of its performance,this paper proposes a high-precision temperature control system for liquid crystals based Stokes polarimeter in space.In order to optimize the structure design and temperature control system,the temperature field of liquid crystals based Stokes polarimeter is analyzed by the finite element method,and the influence of light on the temperature field of the liquid crystal variable retarder is analyzed theoretically.By analyzing the principle of highprecision temperature measurement in space,a high-precision temperature measurement circuit based on integrated operational amplifier,programmable amplifier and 12 bit A/D is designed,and a high-precision space temperature control system is developed by applying the integral separation PI temperature control algorithm and PWM driving heating films.The experimental results show that the effect of temperature control is accurate and stable,whenever the liquid crystals based Stokes polarimeter is either in the air or vacuum.The temperature stability is within±0.0150℃,which demonstrates greatly improved stability for the liquid crystals based Stokes polarimeter.
基金Supported by the National Natural Science Foundation of China
文摘Some experimental tests and improvements to the Very Fast Inversion of the Stokes Vector program, which is designed for the inversion calculation used by the Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory, are given. On one hand, the interpolation for calculating the Voigt function is not smooth, which may occasionally cause the iteration process to converge to different minima although they are very close to initial values. This problem can be solved by a smoother interpolation. On the other hand, in order to improve the performance of this program, we have tried to abandon the randomly-jump-out strategy and set the initial value properly to avoid non-global minima. The resulting method costs only 1//4 of the computational time, and will be very competitive when the users are only interested in the vectorial magnetic fields and the velocities along the line of sight.
基金Supported by the National Natural Science Foundation of China.
文摘We study the magnetic structure of five well-known active regions that produced great flares (X5 or larger). The six flares under investigation are the X12 flare on 1991 June 9 in AR 6659, the X5.7 flare on 2000 July 14 in AR 9077, the X5.6 flare on 2001 April 6 in AR 9415, the X5.3 flare on 2001 August 25 in AR 9591, the X17 flare on 2003 October 28 and the X10 flare on 2003 October 29, both in AR 10486. The last five events had corresponding LASCO observations and were all associated with Halo CMEs. We analyzed vector magnetograms from Big Bear Solar Observatory, Huairou Solar Observing Station, Marshall Space Flight Center and Mees Solar Observatory. In particular, we studied the magnetic gradient derived from line-of-sight magnetograms and magnetic shear derived from vector magnetograms, and found an apparent correlation between these two parameters at a level of about 90%. We found that the magnetic gradient could be a better proxy than the shear for predicting where a major flare might occur: all six flares occurred in neutral lines with maximum gradient. The mean gradient of the flaring neutral lines ranges from 0.14 to 0.50 G km^-1, 2.3 to 8 times the average value for all the neutral lines in the active regions. If we use magnetic shear as the proxy, the flaring neutral line in at least one, possibly two, of the six events would be mis-identified.
基金supported by the Joint Funds of the National Natural Science Foundation of China(U1931107)supported by the National Key Research and Development Program of China No.2021YFA1600500。
文摘A Fourier transform spectrometer(FTS)has been used to observe solar activities due to its ultra-high spectral resolution.However,the FTS in-band spectra are usually distorted and some artifacts appear in out-of-band regions due to nonlinear effects.Therefore,the FTS nonlinear problem must be corrected.In this study,we proposed a novel method to correct the nonlinear effects using simulated annealing.We simulated several nonlinear spectra to evaluate the performance of our method.The calculated quadratic coefficients are extremely close to the given values,demonstrating that the method is effective and accurate.The proposed method is further used to correct the blackbody and solar spectra with nonlinearity obtained by Bruker IFS-125HR installed at the Huairou Solar Observing Station,which is a pathfinder for the accurate infrared magnetic field measurements of the Sun project.To the blackbody spectra,the nonlinearity in low-and high-frequency regions are corrected by 89.09%and 60.84%.The nonlinear correction of the solar spectra in the low-and high-frequency regions have reached 65.34%and 81.04%,respectively.These results prove that our method can correct the nonlinear problem to improve the data accuracy.
基金sponsored by the National Natural Science Foundation of China (NSFC) under grant Nos 11427901 and 12273059the National Key R&D Program of China under grant No. 2021YFA1600500。
文摘This paper reports site survey results for the Infrared System for the Accurate Measurement of Solar Magnetic Field, especially in Saishiteng Mountain, Qinghai, China. Since 2017, we have installed a weather station,spectrometers for precipitable water vapor, and Solar Differential Image Motion Monitor, and have carried out observations on weather elements, precipitable water vapor, and daytime seeing conditions for more than one year in almost all candidates. At Mt. Saishiteng, the median value of daytime precipitable water vapor is 5.25 mm and its median value in winter season is 2.1 mm. The median value of the Fried parameter of daytime seeing observation at Saishiteng Mountain is 3.42 cm. Its solar direct radiation data show that solar average observable time is 446 minutes per day and premium time is 401 minutes per day in 2019 August.
基金supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 11427901, 11873062, 12003051, 11973056, 12073040 and 12173049)the National Key R&D Program of China (2021YFA1600500)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA15320102 and XDA15320302)。
文摘Hundreds of images with the same polarization state are first registered to compensate for the jitters during an observation and then integrated to realize the needed spatial resolution and sensitivity for solar magnetic field measurement. Due to the feature dependent properties of the correlation tracker technique, an effective method to select the feature region is critical for low-resolution full-disk solar filtergrams, especially those with less significant features when the Sun is quiet. In this paper, we propose a region extraction method based on a Hessian matrix and information entropy constraints for local correlation tracking(CT) to get linear displacement between different images. The method is composed of three steps:(1) extract feature points with the Hessian matrix,(2)select good feature points with scale spaces and thresholds, and(3) locate the feature region with the twodimensional information entropy constraints. Both the simulated and observational experiments demonstrated that our region selection method can efficiently detect the linear displacement and improve the quality of a groundbased full-disk solar magnetogram. The local CT with the selected regions can obtain displacement detection results as good as the global CT and at the same time significantly reduce the average calculation time.
基金supported by the National Natural Science Foundation of China(Grant Nos.11703042,11911530089,U1731241,11773038,11427901,11427803,11673033,U1831107,11873062)the Strategic Priority Research Program on Space Science+1 种基金Chinese Academy of Sciences(Grant Nos.XDA15320302,XDA15052200,XDA15320102)the13th Five-year Informatization Plan of Chinese Academy of Sciences(Grant No.XXH13505–04)。
文摘A longitudinal magnetic field often suffers the saturation effect in a strong magnetic field region when the measurement is performed at a single-wavelength point and linear calibration is adopted.In this study,we develop a method that can judge the threshold of saturation in Stokes V/I observed by the Solar Magnetic Field Telescope(SMFT)and correct it automatically.The procedure is to first perform the second-order polynomial fit to the Stokes V/I vs.I/I_(m)(I_(m) is the maximum value of Stokes I)curve to estimate the threshold of saturation,then reconstruct Stokes V/I in a strong field region to correct for saturation.The algorithm is demonstrated to be effective by comparing with the magnetograms obtained by the Helioseismic and Magnetic Imager(HMI).The accuracy rate of detection and correction for saturation is~99.4%and~88%respectively among 175 active regions.The advantages and disadvantages of the algorithm are discussed.
基金funded by the Key Laboratory of Solar Activity of Chinese Academy of Sciences and the National Science Foundationsupported by the National Natural Science Foundation of China (Grant Nos. 11178005 and 11427901)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB09040200)
文摘Stokes inversion calculation is a key process in resolving polarization information on radiation from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermo- dynamic equilibrium (LTE) and where the Milne-Eddington approximation is valid, the inversion problem may not be easy to solve. The initial values for the iterations are important in handling the case with mul- tiple minima. In this paper, we develop a fast inversion technique without iterations. The time taken for computation is only 1/100 the time that the iterative algorithm takes. In addition, it can provide available initial values even in cases with lower spectral resolutions. This strategy is useful for a filter-type Stokes spectrograph, such as SDO/HMI and the developed two-dimensional real-time spectrograph (2DS).
基金Supported by the National Natural Science Foundation of China
文摘Up to now, exact measurements of chromospheric magnetic fields have not been as successful as those done in the photosphere. We are currently engaging in diagnostics of chromospheric magnetic fields with the Mg b2 line by employing the Multi-Channel Solar Telescope at Huairou Solar Observing Station. Therefore, how to improve accuracy in the measurement is the main issue of our present study. To this end, we first study linear calibration coefficients for longitudinal and transverse components of chromospheric fields, which vary with wavelength, in the case of a weak field assumption. Then the polarization crosstalk introduced by instruments is analyzed in detail with two numerical simulation methods. Comparisons of the po- larization signals between cases with and without correction are presented. The result indicates that polarization accuracy is greatly improved after crosstalk correction.